Edit model card

scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1262
  • Accuracy: 0.6046
  • F1: 0.6045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
4.3043 1.09 500 3.2421 0.5683 0.5687
3.0954 2.17 1000 3.1223 0.5702 0.5722
2.2948 3.26 1500 3.3254 0.5741 0.5690
1.7221 4.35 2000 3.3734 0.5910 0.5892
1.3735 5.43 2500 3.3678 0.5683 0.5700
1.1599 6.52 3000 3.4642 0.5872 0.5861
1.0074 7.61 3500 3.3355 0.5795 0.5815
0.8728 8.7 4000 3.2965 0.5856 0.5882
0.8096 9.78 4500 3.4304 0.5799 0.5793
0.7405 10.87 5000 3.3412 0.5856 0.5849
0.6749 11.96 5500 3.2449 0.5829 0.5852
0.6256 13.04 6000 3.0573 0.5992 0.5989
0.591 14.13 6500 3.2229 0.5860 0.5861
0.5531 15.22 7000 3.2349 0.5903 0.5921
0.531 16.3 7500 3.2751 0.5968 0.5966
0.5156 17.39 8000 3.2324 0.5945 0.5960
0.482 18.48 8500 3.3781 0.6007 0.6005
0.4724 19.57 9000 3.1535 0.5883 0.5894
0.4587 20.65 9500 3.3708 0.5910 0.5903
0.4372 21.74 10000 3.1164 0.5995 0.6006
0.4281 22.83 10500 3.0913 0.5907 0.5917
0.4151 23.91 11000 3.0730 0.6053 0.6050
0.407 25.0 11500 3.1531 0.5984 0.5988
0.3966 26.09 12000 3.1692 0.6053 0.6044
0.3936 27.17 12500 3.3192 0.6026 0.6019
0.3848 28.26 13000 3.1133 0.6080 0.6085
0.3754 29.35 13500 3.1272 0.5965 0.5970
0.3734 30.43 14000 3.2430 0.6026 0.6026
0.3685 31.52 14500 3.0758 0.6107 0.6112
0.3617 32.61 15000 3.1241 0.5965 0.5975
0.3592 33.7 15500 3.2830 0.5926 0.5929
0.3545 34.78 16000 3.1901 0.6038 0.6035
0.3486 35.87 16500 3.2132 0.5980 0.5985
0.3502 36.96 17000 3.1464 0.5999 0.6003
0.3458 38.04 17500 3.2477 0.6080 0.6074
0.341 39.13 18000 3.2192 0.5918 0.5926
0.3413 40.22 18500 3.1910 0.6111 0.6114
0.3355 41.3 19000 3.1159 0.6065 0.6072
0.3381 42.39 19500 3.1962 0.6007 0.6008
0.3308 43.48 20000 3.1165 0.6061 0.6064
0.3326 44.57 20500 3.2242 0.6076 0.6072
0.3331 45.65 21000 3.2347 0.6046 0.6046
0.3319 46.74 21500 3.2428 0.5941 0.5941
0.3282 47.83 22000 3.1621 0.6053 0.6058
0.3275 48.91 22500 3.2598 0.6042 0.6044
0.3291 50.0 23000 3.1262 0.6046 0.6045

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66

Finetuned
(13)
this model