haryoaw's picture
Initial Commit
a39ec7e verified
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: scenario-TCR-NER_data-univner_half
    results: []

scenario-TCR-NER_data-univner_half

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1160
  • Precision: 0.8555
  • Recall: 0.8189
  • F1: 0.8368
  • Accuracy: 0.9828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1189 0.58 500 0.0623 0.8010 0.8531 0.8262 0.9822
0.0469 1.17 1000 0.0640 0.8246 0.8567 0.8404 0.9833
0.0348 1.75 1500 0.0668 0.8335 0.8550 0.8441 0.9834
0.0242 2.33 2000 0.0734 0.8202 0.8538 0.8367 0.9826
0.0215 2.91 2500 0.0717 0.8455 0.8598 0.8526 0.9843
0.0142 3.5 3000 0.0802 0.8383 0.8424 0.8404 0.9836
0.0144 4.08 3500 0.0836 0.8443 0.8554 0.8499 0.9843
0.0103 4.66 4000 0.0811 0.8479 0.8590 0.8534 0.9844
0.0087 5.24 4500 0.0887 0.8364 0.8628 0.8494 0.9840
0.0092 5.83 5000 0.0876 0.8367 0.8430 0.8399 0.9833
0.0076 6.41 5500 0.1004 0.8440 0.8495 0.8468 0.9841
0.007 6.99 6000 0.1080 0.8215 0.8518 0.8364 0.9830
0.0055 7.58 6500 0.0988 0.8454 0.8358 0.8406 0.9831
0.0055 8.16 7000 0.0950 0.8485 0.8461 0.8473 0.9839
0.0044 8.74 7500 0.1001 0.8456 0.8414 0.8435 0.9836
0.004 9.32 8000 0.1084 0.8340 0.8495 0.8417 0.9834
0.004 9.91 8500 0.1175 0.8351 0.8505 0.8427 0.9829
0.0033 10.49 9000 0.1160 0.8555 0.8189 0.8368 0.9828

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3