haryoaw's picture
Initial Commit
a50fed4 verified
|
raw
history blame
2.26 kB
---
license: mit
base_model: facebook/xlm-v-base
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
- f1
model-index:
- name: scenario-TCR_data-AmazonScience_massive_all_1_1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: massive
type: massive
config: all_1.1
split: validation
args: all_1.1
metrics:
- name: Accuracy
type: accuracy
value: 0.051647811116576486
- name: F1
type: f1
value: 0.0016647904742274576
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-TCR_data-AmazonScience_massive_all_1_1
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8189
- Accuracy: 0.0516
- F1: 0.0017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 3.7541 | 0.27 | 5000 | 3.7437 | 0.0605 | 0.0019 |
| 3.7191 | 0.53 | 10000 | 3.7655 | 0.0620 | 0.0020 |
| 3.7281 | 0.8 | 15000 | 3.8011 | 0.0516 | 0.0017 |
| 3.7116 | 1.07 | 20000 | 3.8592 | 0.0516 | 0.0017 |
| 3.7068 | 1.34 | 25000 | 3.8168 | 0.0516 | 0.0017 |
| 3.7064 | 1.6 | 30000 | 3.8746 | 0.0516 | 0.0017 |
| 3.7059 | 1.87 | 35000 | 3.8189 | 0.0516 | 0.0017 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3