scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 63.9106
  • Precision: 0.7647
  • Recall: 0.7671
  • F1: 0.7659
  • Accuracy: 0.9812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
115.4337 1.28 500 89.9508 0.6039 0.5114 0.5538 0.9672
81.5056 2.55 1000 78.2589 0.7137 0.7019 0.7077 0.9781
73.2299 3.83 1500 72.9013 0.7153 0.7360 0.7255 0.9791
68.3008 5.1 2000 69.0462 0.7313 0.7692 0.7497 0.9806
64.8932 6.38 2500 66.5653 0.7296 0.7516 0.7404 0.9796
62.7315 7.65 3000 64.7790 0.7677 0.7526 0.7601 0.9808
61.2637 8.93 3500 63.9106 0.7647 0.7671 0.7659 0.9812

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
8
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66