haryoaw commited on
Commit
013168f
·
verified ·
1 Parent(s): 20f6caa

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +74 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-kd-po-ner-full-mdeberta-halfen_data-univner_en66
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 63.9106
24
+ - Precision: 0.7647
25
+ - Recall: 0.7671
26
+ - F1: 0.7659
27
+ - Accuracy: 0.9812
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 32
49
+ - seed: 66
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 10
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | 115.4337 | 1.28 | 500 | 89.9508 | 0.6039 | 0.5114 | 0.5538 | 0.9672 |
61
+ | 81.5056 | 2.55 | 1000 | 78.2589 | 0.7137 | 0.7019 | 0.7077 | 0.9781 |
62
+ | 73.2299 | 3.83 | 1500 | 72.9013 | 0.7153 | 0.7360 | 0.7255 | 0.9791 |
63
+ | 68.3008 | 5.1 | 2000 | 69.0462 | 0.7313 | 0.7692 | 0.7497 | 0.9806 |
64
+ | 64.8932 | 6.38 | 2500 | 66.5653 | 0.7296 | 0.7516 | 0.7404 | 0.9796 |
65
+ | 62.7315 | 7.65 | 3000 | 64.7790 | 0.7677 | 0.7526 | 0.7601 | 0.9808 |
66
+ | 61.2637 | 8.93 | 3500 | 63.9106 | 0.7647 | 0.7671 | 0.7659 | 0.9812 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.33.3
72
+ - Pytorch 2.1.1+cu121
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.33.3",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.29523809523809524, "recall": 0.6326530612244898, "f1": 0.4025974025974026, "accuracy": 0.911969111969112}, "en_pud": {"precision": 0.7563499529633114, "recall": 0.747906976744186, "f1": 0.7521047708138447, "accuracy": 0.9768133736305251}, "de_pud": {"precision": 0.6998972250770812, "recall": 0.6554379210779596, "f1": 0.6769383697813122, "accuracy": 0.9674651915053208}, "pt_pud": {"precision": 0.7214217098943324, "recall": 0.6833484986351228, "f1": 0.7018691588785048, "accuracy": 0.9708206946639895}, "ru_pud": {"precision": 0.5908667287977633, "recall": 0.611969111969112, "f1": 0.6012328117591276, "accuracy": 0.9593386721777318}, "sv_pud": {"precision": 0.7737603305785123, "recall": 0.7278911564625851, "f1": 0.7501251877816724, "accuracy": 0.9761480394212623}, "tl_trg": {"precision": 0.33962264150943394, "recall": 0.782608695652174, "f1": 0.47368421052631576, "accuracy": 0.9455040871934605}, "tl_ugnayan": {"precision": 0.3787878787878788, "recall": 0.7575757575757576, "f1": 0.5050505050505051, "accuracy": 0.9480401093892434}, "zh_gsd": {"precision": 0.517503805175038, "recall": 0.44328552803129073, "f1": 0.47752808988764045, "accuracy": 0.9324009324009324}, "zh_gsdsimp": {"precision": 0.51698670605613, "recall": 0.45871559633027525, "f1": 0.4861111111111111, "accuracy": 0.9324009324009324}, "hr_set": {"precision": 0.6844319775596073, "recall": 0.6956521739130435, "f1": 0.6899964651820432, "accuracy": 0.962366034624897}, "da_ddt": {"precision": 0.7105263157894737, "recall": 0.6040268456375839, "f1": 0.652962515114873, "accuracy": 0.9746582859423326}, "en_ewt": {"precision": 0.8021133525456292, "recall": 0.7674632352941176, "f1": 0.7844058243306717, "accuracy": 0.9790811650794916}, "pt_bosque": {"precision": 0.6679069767441861, "recall": 0.5909465020576131, "f1": 0.6270742358078601, "accuracy": 0.9638458194464571}, "sr_set": {"precision": 0.6817653890824622, "recall": 0.693034238488784, "f1": 0.6873536299765808, "accuracy": 0.9556956483670431}, "sk_snk": {"precision": 0.5825027685492802, "recall": 0.5748633879781421, "f1": 0.5786578657865786, "accuracy": 0.9433888190954773}, "sv_talbanken": {"precision": 0.7387387387387387, "recall": 0.8367346938775511, "f1": 0.784688995215311, "accuracy": 0.9957795553810669}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c823cef76ff683971ac9ba2e392a47dd8c9f1162a8f673f6a07d2dde02d45b7c
3
+ size 944389666
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:833c34e45df2255e1cc0e9090b09edf735c1aa5bf257fc0a6c2834465484b698
3
+ size 4600