File size: 4,858 Bytes
9d36ead
45f93fc
9d36ead
 
 
 
 
 
 
45f93fc
 
9d36ead
 
 
 
 
 
 
 
 
 
 
 
37ca3be
 
 
 
 
9d36ead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ca3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d36ead
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-po-ner-full-mdeberta_data-univner_full66
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-po-ner-full-mdeberta_data-univner_full66

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 46.8943
- Precision: 0.8216
- Recall: 0.8305
- F1: 0.8260
- Accuracy: 0.9824

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 135.9225      | 0.2911 | 500   | 108.8223        | 0.6029    | 0.4263 | 0.4995 | 0.9530   |
| 101.0224      | 0.5822 | 1000  | 94.7779         | 0.7231    | 0.7083 | 0.7156 | 0.9727   |
| 91.1928       | 0.8732 | 1500  | 88.1561         | 0.7488    | 0.7565 | 0.7526 | 0.9760   |
| 85.2395       | 1.1643 | 2000  | 83.2027         | 0.7757    | 0.7680 | 0.7718 | 0.9777   |
| 80.2907       | 1.4554 | 2500  | 79.1339         | 0.7824    | 0.7925 | 0.7874 | 0.9788   |
| 76.5231       | 1.7465 | 3000  | 75.6774         | 0.7942    | 0.7846 | 0.7894 | 0.9793   |
| 73.1464       | 2.0375 | 3500  | 72.6010         | 0.8048    | 0.7973 | 0.8010 | 0.9801   |
| 69.6437       | 2.3286 | 4000  | 69.6290         | 0.7955    | 0.8179 | 0.8066 | 0.9803   |
| 67.0793       | 2.6197 | 4500  | 67.2226         | 0.8016    | 0.8085 | 0.8051 | 0.9808   |
| 64.9103       | 2.9108 | 5000  | 65.1388         | 0.8012    | 0.8176 | 0.8093 | 0.9807   |
| 62.5177       | 3.2019 | 5500  | 63.1765         | 0.8105    | 0.8160 | 0.8133 | 0.9813   |
| 60.6079       | 3.4929 | 6000  | 61.4149         | 0.8158    | 0.8129 | 0.8143 | 0.9811   |
| 58.9252       | 3.7840 | 6500  | 59.9050         | 0.8118    | 0.8212 | 0.8165 | 0.9810   |
| 57.4544       | 4.0751 | 7000  | 58.3757         | 0.8063    | 0.8260 | 0.8161 | 0.9813   |
| 55.9212       | 4.3662 | 7500  | 57.1185         | 0.8129    | 0.8254 | 0.8191 | 0.9815   |
| 54.706        | 4.6573 | 8000  | 55.9905         | 0.8208    | 0.8197 | 0.8202 | 0.9818   |
| 53.5567       | 4.9483 | 8500  | 54.9749         | 0.8117    | 0.8259 | 0.8187 | 0.9813   |
| 52.4084       | 5.2394 | 9000  | 53.9236         | 0.8158    | 0.8228 | 0.8193 | 0.9815   |
| 51.3684       | 5.5305 | 9500  | 52.9420         | 0.8148    | 0.8263 | 0.8205 | 0.9817   |
| 50.5374       | 5.8216 | 10000 | 52.1205         | 0.8224    | 0.8209 | 0.8217 | 0.9819   |
| 49.7012       | 6.1126 | 10500 | 51.3587         | 0.8195    | 0.8310 | 0.8252 | 0.9820   |
| 48.8997       | 6.4037 | 11000 | 50.7199         | 0.8205    | 0.8270 | 0.8237 | 0.9819   |
| 48.3307       | 6.6948 | 11500 | 50.0936         | 0.8238    | 0.8215 | 0.8227 | 0.9821   |
| 47.765        | 6.9859 | 12000 | 49.5167         | 0.8177    | 0.8318 | 0.8247 | 0.9819   |
| 47.1176       | 7.2770 | 12500 | 49.0615         | 0.8195    | 0.8305 | 0.8249 | 0.9821   |
| 46.5727       | 7.5680 | 13000 | 48.6345         | 0.8176    | 0.8347 | 0.8260 | 0.9820   |
| 46.2968       | 7.8591 | 13500 | 48.2124         | 0.8193    | 0.8282 | 0.8237 | 0.9821   |
| 45.8193       | 8.1502 | 14000 | 47.8940         | 0.8236    | 0.8285 | 0.8260 | 0.9821   |
| 45.4871       | 8.4413 | 14500 | 47.5967         | 0.8171    | 0.8362 | 0.8266 | 0.9819   |
| 45.2671       | 8.7324 | 15000 | 47.3633         | 0.8252    | 0.8329 | 0.8290 | 0.9824   |
| 45.0471       | 9.0234 | 15500 | 47.1393         | 0.8245    | 0.8280 | 0.8262 | 0.9821   |
| 44.7971       | 9.3145 | 16000 | 47.0470         | 0.8234    | 0.8315 | 0.8274 | 0.9822   |
| 44.7601       | 9.6056 | 16500 | 46.9315         | 0.8223    | 0.8331 | 0.8276 | 0.9825   |
| 44.647        | 9.8967 | 17000 | 46.8943         | 0.8216    | 0.8305 | 0.8260 | 0.9824   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1