File size: 3,233 Bytes
dbb5a25
bbbb683
dbb5a25
 
 
 
 
 
 
bbbb683
 
dbb5a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-po-ner-full-xlmr_data-univner_half44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-po-ner-full-xlmr_data-univner_half44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 53.5855
- Precision: 0.7926
- Recall: 0.7941
- F1: 0.7934
- Accuracy: 0.9792

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 44
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 94.1316       | 0.5828 | 500  | 77.7639         | 0.7573    | 0.7254 | 0.7410 | 0.9749   |
| 69.1816       | 1.1655 | 1000 | 70.0861         | 0.7700    | 0.7553 | 0.7626 | 0.9771   |
| 62.5325       | 1.7483 | 1500 | 66.1010         | 0.7697    | 0.7728 | 0.7712 | 0.9774   |
| 58.8032       | 2.3310 | 2000 | 63.2843         | 0.7722    | 0.7813 | 0.7767 | 0.9781   |
| 55.8439       | 2.9138 | 2500 | 61.3899         | 0.7711    | 0.7839 | 0.7774 | 0.9777   |
| 53.6386       | 3.4965 | 3000 | 59.5744         | 0.7829    | 0.7804 | 0.7816 | 0.9782   |
| 51.8854       | 4.0793 | 3500 | 58.4745         | 0.7896    | 0.7831 | 0.7864 | 0.9784   |
| 50.3704       | 4.6620 | 4000 | 57.3648         | 0.7888    | 0.7917 | 0.7902 | 0.9787   |
| 49.2945       | 5.2448 | 4500 | 56.3673         | 0.8003    | 0.7807 | 0.7904 | 0.9787   |
| 48.3678       | 5.8275 | 5000 | 55.7695         | 0.7906    | 0.7840 | 0.7873 | 0.9787   |
| 47.4721       | 6.4103 | 5500 | 55.1454         | 0.7836    | 0.7964 | 0.7900 | 0.9792   |
| 46.9783       | 6.9930 | 6000 | 54.6410         | 0.7931    | 0.7976 | 0.7953 | 0.9790   |
| 46.3896       | 7.5758 | 6500 | 54.2132         | 0.8004    | 0.7902 | 0.7953 | 0.9792   |
| 45.895        | 8.1585 | 7000 | 53.9535         | 0.7906    | 0.7945 | 0.7925 | 0.9792   |
| 45.6796       | 8.7413 | 7500 | 53.7738         | 0.7918    | 0.7895 | 0.7906 | 0.9788   |
| 45.4159       | 9.3240 | 8000 | 53.6266         | 0.7904    | 0.7950 | 0.7927 | 0.9793   |
| 45.3274       | 9.9068 | 8500 | 53.5855         | 0.7926    | 0.7941 | 0.7934 | 0.9792   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1