metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-po-ner-full-xlmr_data-univner_half66
results: []
scenario-kd-po-ner-full-xlmr_data-univner_half66
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:
- Loss: 53.5934
- Precision: 0.7914
- Recall: 0.7922
- F1: 0.7918
- Accuracy: 0.9789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
93.9811 | 0.5828 | 500 | 77.1719 | 0.7802 | 0.7262 | 0.7522 | 0.9755 |
69.0206 | 1.1655 | 1000 | 70.2429 | 0.7554 | 0.7718 | 0.7635 | 0.9766 |
62.467 | 1.7483 | 1500 | 66.3316 | 0.7886 | 0.7455 | 0.7664 | 0.9767 |
58.5858 | 2.3310 | 2000 | 63.5450 | 0.7970 | 0.7396 | 0.7672 | 0.9768 |
55.7072 | 2.9138 | 2500 | 61.1857 | 0.7871 | 0.7772 | 0.7821 | 0.9783 |
53.5041 | 3.4965 | 3000 | 59.5353 | 0.7816 | 0.7843 | 0.7829 | 0.9783 |
51.8153 | 4.0793 | 3500 | 58.3157 | 0.7938 | 0.7863 | 0.7900 | 0.9786 |
50.327 | 4.6620 | 4000 | 57.1124 | 0.7914 | 0.7905 | 0.7910 | 0.9788 |
49.2402 | 5.2448 | 4500 | 56.3184 | 0.7844 | 0.7986 | 0.7914 | 0.9789 |
48.2334 | 5.8275 | 5000 | 55.7867 | 0.7922 | 0.7862 | 0.7892 | 0.9787 |
47.4646 | 6.4103 | 5500 | 55.2770 | 0.7955 | 0.7818 | 0.7886 | 0.9785 |
46.8764 | 6.9930 | 6000 | 54.6109 | 0.7958 | 0.7826 | 0.7891 | 0.9788 |
46.3099 | 7.5758 | 6500 | 54.2702 | 0.8051 | 0.7830 | 0.7939 | 0.9792 |
45.8877 | 8.1585 | 7000 | 53.9679 | 0.7953 | 0.7917 | 0.7935 | 0.9792 |
45.5735 | 8.7413 | 7500 | 53.7160 | 0.7935 | 0.7907 | 0.7921 | 0.9787 |
45.3573 | 9.3240 | 8000 | 53.6114 | 0.7886 | 0.7919 | 0.7903 | 0.9791 |
45.2644 | 9.9068 | 8500 | 53.5934 | 0.7914 | 0.7922 | 0.7918 | 0.9789 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1