Edit model card

scenario-kd-po-ner-full_data-univner_full66

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4139
  • Precision: 0.8074
  • Recall: 0.7771
  • F1: 0.7919
  • Accuracy: 0.9789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9198 0.5828 500 0.6766 0.7412 0.7331 0.7371 0.9745
0.5493 1.1655 1000 0.5975 0.7499 0.7560 0.7529 0.9759
0.4453 1.7483 1500 0.5731 0.7583 0.7585 0.7584 0.9758
0.3762 2.3310 2000 0.5606 0.7824 0.7492 0.7655 0.9764
0.3436 2.9138 2500 0.5208 0.7708 0.7697 0.7703 0.9770
0.3082 3.4965 3000 0.5114 0.7891 0.7491 0.7686 0.9769
0.2933 4.0793 3500 0.5024 0.7873 0.7654 0.7762 0.9774
0.2672 4.6620 4000 0.4971 0.7916 0.7552 0.7729 0.9775
0.2525 5.2448 4500 0.4924 0.7733 0.7775 0.7754 0.9771
0.2385 5.8275 5000 0.4891 0.7833 0.7725 0.7779 0.9775
0.2269 6.4103 5500 0.4843 0.7828 0.7797 0.7813 0.9774
0.2215 6.9930 6000 0.4729 0.7741 0.7862 0.7801 0.9778
0.2076 7.5758 6500 0.4617 0.7838 0.7772 0.7805 0.9780
0.201 8.1585 7000 0.4653 0.7975 0.7671 0.7820 0.9779
0.1935 8.7413 7500 0.4574 0.7785 0.7922 0.7853 0.9778
0.1869 9.3240 8000 0.4662 0.7905 0.7821 0.7863 0.9784
0.1825 9.9068 8500 0.4539 0.7883 0.7807 0.7845 0.9782
0.1748 10.4895 9000 0.4486 0.7975 0.7852 0.7913 0.9789
0.1714 11.0723 9500 0.4499 0.7975 0.7829 0.7901 0.9787
0.166 11.6550 10000 0.4429 0.7931 0.7852 0.7891 0.9787
0.1612 12.2378 10500 0.4427 0.7913 0.7788 0.7850 0.9782
0.1567 12.8205 11000 0.4413 0.8024 0.7762 0.7891 0.9786
0.1544 13.4033 11500 0.4421 0.8068 0.7628 0.7842 0.9781
0.1502 13.9860 12000 0.4388 0.8009 0.7843 0.7925 0.9788
0.146 14.5688 12500 0.4295 0.8 0.7768 0.7882 0.9786
0.1434 15.1515 13000 0.4402 0.8057 0.7755 0.7903 0.9784
0.1404 15.7343 13500 0.4352 0.8106 0.7713 0.7905 0.9785
0.1387 16.3170 14000 0.4360 0.7981 0.7729 0.7853 0.9783
0.1356 16.8998 14500 0.4328 0.8071 0.7722 0.7893 0.9786
0.1345 17.4825 15000 0.4278 0.7990 0.7736 0.7861 0.9786
0.1313 18.0653 15500 0.4268 0.7985 0.7868 0.7926 0.9789
0.1282 18.6480 16000 0.4219 0.7983 0.7818 0.7900 0.9789
0.1284 19.2308 16500 0.4313 0.7968 0.7729 0.7847 0.9782
0.1242 19.8135 17000 0.4255 0.8103 0.7803 0.7950 0.9790
0.1239 20.3963 17500 0.4315 0.8060 0.7720 0.7887 0.9786
0.124 20.9790 18000 0.4317 0.8117 0.7663 0.7883 0.9782
0.1219 21.5618 18500 0.4198 0.7959 0.7758 0.7857 0.9783
0.1199 22.1445 19000 0.4257 0.7976 0.7795 0.7885 0.9784
0.1184 22.7273 19500 0.4271 0.8095 0.7664 0.7874 0.9784
0.118 23.3100 20000 0.4169 0.8076 0.7769 0.7920 0.9789
0.1176 23.8928 20500 0.4203 0.8069 0.7769 0.7916 0.9786
0.1152 24.4755 21000 0.4180 0.8056 0.7816 0.7934 0.9790
0.115 25.0583 21500 0.4206 0.8082 0.7765 0.7921 0.9791
0.1126 25.6410 22000 0.4196 0.8047 0.7762 0.7902 0.9787
0.1148 26.2238 22500 0.4176 0.8061 0.7820 0.7938 0.9789
0.1123 26.8065 23000 0.4156 0.8086 0.7826 0.7954 0.9791
0.1108 27.3893 23500 0.4133 0.8089 0.7829 0.7957 0.9792
0.111 27.9720 24000 0.4114 0.8021 0.7768 0.7893 0.9790
0.1099 28.5548 24500 0.4159 0.8066 0.7739 0.7899 0.9786
0.1112 29.1375 25000 0.4151 0.8082 0.7804 0.7940 0.9789
0.1091 29.7203 25500 0.4139 0.8074 0.7771 0.7919 0.9789

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-po-ner-full_data-univner_full66