haryoaw commited on
Commit
704bbc9
1 Parent(s): fc95a3d

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +32 -60
  2. config.json +14 -21
  3. eval_result_ner.json +1 -1
  4. model.safetensors +2 -2
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: haryoaw/scenario-TCR-NER_data-univner_half
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-kd-po-ner-full_data-univner_full66
14
  results: []
@@ -19,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # scenario-kd-po-ner-full_data-univner_full66
21
 
22
- This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3242
25
- - Precision: 0.8056
26
- - Recall: 0.7751
27
- - F1: 0.7901
28
- - Accuracy: 0.9783
29
 
30
  ## Model description
31
 
@@ -56,57 +56,29 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 1.2921 | 0.5828 | 500 | 0.7894 | 0.4860 | 0.4574 | 0.4712 | 0.9537 |
60
- | 0.6435 | 1.1655 | 1000 | 0.5676 | 0.6461 | 0.6621 | 0.6540 | 0.9669 |
61
- | 0.4512 | 1.7483 | 1500 | 0.4976 | 0.7198 | 0.6950 | 0.7072 | 0.9713 |
62
- | 0.3533 | 2.3310 | 2000 | 0.4642 | 0.7328 | 0.7188 | 0.7257 | 0.9730 |
63
- | 0.3058 | 2.9138 | 2500 | 0.4469 | 0.7334 | 0.7259 | 0.7296 | 0.9732 |
64
- | 0.2496 | 3.4965 | 3000 | 0.4380 | 0.7275 | 0.7591 | 0.7429 | 0.9741 |
65
- | 0.2323 | 4.0793 | 3500 | 0.4192 | 0.7561 | 0.7419 | 0.7489 | 0.9750 |
66
- | 0.2013 | 4.6620 | 4000 | 0.4210 | 0.7635 | 0.7332 | 0.7481 | 0.9751 |
67
- | 0.1896 | 5.2448 | 4500 | 0.4109 | 0.7415 | 0.7645 | 0.7529 | 0.9753 |
68
- | 0.1738 | 5.8275 | 5000 | 0.4173 | 0.7627 | 0.7425 | 0.7524 | 0.9752 |
69
- | 0.1657 | 6.4103 | 5500 | 0.3956 | 0.7657 | 0.7648 | 0.7653 | 0.9761 |
70
- | 0.1565 | 6.9930 | 6000 | 0.3871 | 0.7660 | 0.7668 | 0.7664 | 0.9766 |
71
- | 0.1469 | 7.5758 | 6500 | 0.3904 | 0.7668 | 0.7642 | 0.7655 | 0.9761 |
72
- | 0.1398 | 8.1585 | 7000 | 0.3882 | 0.7785 | 0.7477 | 0.7628 | 0.9760 |
73
- | 0.1353 | 8.7413 | 7500 | 0.3902 | 0.7805 | 0.7582 | 0.7692 | 0.9764 |
74
- | 0.13 | 9.3240 | 8000 | 0.3803 | 0.7887 | 0.7557 | 0.7719 | 0.9768 |
75
- | 0.1278 | 9.9068 | 8500 | 0.3693 | 0.7842 | 0.7624 | 0.7731 | 0.9772 |
76
- | 0.1225 | 10.4895 | 9000 | 0.3724 | 0.7898 | 0.7589 | 0.7740 | 0.9769 |
77
- | 0.1206 | 11.0723 | 9500 | 0.3725 | 0.7671 | 0.7818 | 0.7744 | 0.9768 |
78
- | 0.1168 | 11.6550 | 10000 | 0.3849 | 0.7976 | 0.7419 | 0.7687 | 0.9764 |
79
- | 0.1145 | 12.2378 | 10500 | 0.3673 | 0.7901 | 0.7638 | 0.7768 | 0.9770 |
80
- | 0.1112 | 12.8205 | 11000 | 0.3567 | 0.7861 | 0.7849 | 0.7855 | 0.9779 |
81
- | 0.1095 | 13.4033 | 11500 | 0.3578 | 0.7970 | 0.7573 | 0.7767 | 0.9774 |
82
- | 0.1079 | 13.9860 | 12000 | 0.3579 | 0.7888 | 0.7696 | 0.7791 | 0.9772 |
83
- | 0.1049 | 14.5688 | 12500 | 0.3515 | 0.7756 | 0.7875 | 0.7815 | 0.9775 |
84
- | 0.1025 | 15.1515 | 13000 | 0.3537 | 0.7922 | 0.7755 | 0.7838 | 0.9777 |
85
- | 0.1025 | 15.7343 | 13500 | 0.3633 | 0.7988 | 0.7593 | 0.7786 | 0.9769 |
86
- | 0.1013 | 16.3170 | 14000 | 0.3556 | 0.7995 | 0.7556 | 0.7769 | 0.9771 |
87
- | 0.099 | 16.8998 | 14500 | 0.3611 | 0.7883 | 0.7638 | 0.7758 | 0.9770 |
88
- | 0.0979 | 17.4825 | 15000 | 0.3492 | 0.8138 | 0.7513 | 0.7813 | 0.9775 |
89
- | 0.0968 | 18.0653 | 15500 | 0.3440 | 0.7963 | 0.7706 | 0.7833 | 0.9778 |
90
- | 0.0943 | 18.6480 | 16000 | 0.3488 | 0.7949 | 0.7752 | 0.7850 | 0.9777 |
91
- | 0.0951 | 19.2308 | 16500 | 0.3452 | 0.7943 | 0.7709 | 0.7824 | 0.9779 |
92
- | 0.0923 | 19.8135 | 17000 | 0.3336 | 0.7879 | 0.7793 | 0.7835 | 0.9782 |
93
- | 0.0935 | 20.3963 | 17500 | 0.3401 | 0.8052 | 0.7614 | 0.7826 | 0.9777 |
94
- | 0.0918 | 20.9790 | 18000 | 0.3368 | 0.7963 | 0.7794 | 0.7878 | 0.9781 |
95
- | 0.0912 | 21.5618 | 18500 | 0.3391 | 0.8037 | 0.7713 | 0.7872 | 0.9778 |
96
- | 0.09 | 22.1445 | 19000 | 0.3328 | 0.8001 | 0.7722 | 0.7859 | 0.9780 |
97
- | 0.0892 | 22.7273 | 19500 | 0.3396 | 0.8075 | 0.7645 | 0.7854 | 0.9778 |
98
- | 0.0885 | 23.3100 | 20000 | 0.3352 | 0.8024 | 0.7754 | 0.7887 | 0.9782 |
99
- | 0.088 | 23.8928 | 20500 | 0.3298 | 0.8089 | 0.7775 | 0.7929 | 0.9786 |
100
- | 0.0874 | 24.4755 | 21000 | 0.3278 | 0.7972 | 0.7756 | 0.7863 | 0.9782 |
101
- | 0.087 | 25.0583 | 21500 | 0.3305 | 0.8063 | 0.7697 | 0.7876 | 0.9782 |
102
- | 0.0857 | 25.6410 | 22000 | 0.3316 | 0.8093 | 0.7666 | 0.7873 | 0.9781 |
103
- | 0.0862 | 26.2238 | 22500 | 0.3305 | 0.8011 | 0.7699 | 0.7852 | 0.9778 |
104
- | 0.0858 | 26.8065 | 23000 | 0.3305 | 0.8062 | 0.7700 | 0.7877 | 0.9781 |
105
- | 0.0857 | 27.3893 | 23500 | 0.3291 | 0.7981 | 0.7720 | 0.7848 | 0.9780 |
106
- | 0.0847 | 27.9720 | 24000 | 0.3264 | 0.8108 | 0.7700 | 0.7899 | 0.9783 |
107
- | 0.0846 | 28.5548 | 24500 | 0.3270 | 0.8038 | 0.7673 | 0.7851 | 0.9781 |
108
- | 0.0848 | 29.1375 | 25000 | 0.3272 | 0.8078 | 0.7738 | 0.7904 | 0.9784 |
109
- | 0.084 | 29.7203 | 25500 | 0.3242 | 0.8056 | 0.7751 | 0.7901 | 0.9783 |
110
 
111
 
112
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_en
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-kd-po-ner-full_data-univner_full66
14
  results: []
 
19
 
20
  # scenario-kd-po-ner-full_data-univner_full66
21
 
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.5267
25
+ - Precision: 0.7744
26
+ - Recall: 0.7391
27
+ - F1: 0.7564
28
+ - Accuracy: 0.9807
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.8089 | 1.2755 | 500 | 0.7185 | 0.7338 | 0.6791 | 0.7054 | 0.9767 |
60
+ | 0.4626 | 2.5510 | 1000 | 0.6447 | 0.7127 | 0.7319 | 0.7222 | 0.9787 |
61
+ | 0.3791 | 3.8265 | 1500 | 0.5975 | 0.7349 | 0.7288 | 0.7318 | 0.9794 |
62
+ | 0.3262 | 5.1020 | 2000 | 0.5889 | 0.7447 | 0.7277 | 0.7361 | 0.9797 |
63
+ | 0.2868 | 6.3776 | 2500 | 0.5714 | 0.7427 | 0.7381 | 0.7404 | 0.9799 |
64
+ | 0.2587 | 7.6531 | 3000 | 0.5688 | 0.7703 | 0.7257 | 0.7473 | 0.9807 |
65
+ | 0.2389 | 8.9286 | 3500 | 0.5610 | 0.7338 | 0.7246 | 0.7292 | 0.9791 |
66
+ | 0.2211 | 10.2041 | 4000 | 0.5571 | 0.7719 | 0.7495 | 0.7605 | 0.9800 |
67
+ | 0.2022 | 11.4796 | 4500 | 0.5692 | 0.776 | 0.7029 | 0.7376 | 0.9799 |
68
+ | 0.1903 | 12.7551 | 5000 | 0.5554 | 0.7711 | 0.7360 | 0.7532 | 0.9804 |
69
+ | 0.179 | 14.0306 | 5500 | 0.5411 | 0.7574 | 0.7371 | 0.7471 | 0.9803 |
70
+ | 0.1688 | 15.3061 | 6000 | 0.5353 | 0.7602 | 0.7516 | 0.7559 | 0.9804 |
71
+ | 0.1608 | 16.5816 | 6500 | 0.5383 | 0.7748 | 0.7267 | 0.75 | 0.9802 |
72
+ | 0.1552 | 17.8571 | 7000 | 0.5223 | 0.7716 | 0.7381 | 0.7545 | 0.9800 |
73
+ | 0.1489 | 19.1327 | 7500 | 0.5300 | 0.7721 | 0.7329 | 0.7520 | 0.9801 |
74
+ | 0.1439 | 20.4082 | 8000 | 0.5321 | 0.7634 | 0.7246 | 0.7435 | 0.9797 |
75
+ | 0.1391 | 21.6837 | 8500 | 0.5204 | 0.7798 | 0.7443 | 0.7617 | 0.9805 |
76
+ | 0.1351 | 22.9592 | 9000 | 0.5251 | 0.7489 | 0.7350 | 0.7419 | 0.9800 |
77
+ | 0.131 | 24.2347 | 9500 | 0.5164 | 0.7664 | 0.7505 | 0.7584 | 0.9808 |
78
+ | 0.1291 | 25.5102 | 10000 | 0.5216 | 0.7614 | 0.7236 | 0.7420 | 0.9798 |
79
+ | 0.1276 | 26.7857 | 10500 | 0.5257 | 0.7739 | 0.7371 | 0.7550 | 0.9804 |
80
+ | 0.1251 | 28.0612 | 11000 | 0.5156 | 0.7692 | 0.7453 | 0.7571 | 0.9808 |
81
+ | 0.1241 | 29.3367 | 11500 | 0.5267 | 0.7744 | 0.7391 | 0.7564 | 0.9807 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  ### Framework versions
config.json CHANGED
@@ -1,9 +1,12 @@
1
  {
2
- "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
  "architectures": [
4
- "DebertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
 
 
 
7
  "hidden_act": "gelu",
8
  "hidden_dropout_prob": 0.1,
9
  "hidden_size": 768,
@@ -27,27 +30,17 @@
27
  "LABEL_5": 5,
28
  "LABEL_6": 6
29
  },
30
- "layer_norm_eps": 1e-07,
31
- "max_position_embeddings": 512,
32
- "max_relative_positions": -1,
33
- "model_type": "deberta-v2",
34
- "norm_rel_ebd": "layer_norm",
35
  "num_attention_heads": 12,
36
  "num_hidden_layers": 6,
37
- "pad_token_id": 0,
38
- "pooler_dropout": 0,
39
- "pooler_hidden_act": "gelu",
40
- "pooler_hidden_size": 768,
41
- "pos_att_type": [
42
- "p2c",
43
- "c2p"
44
- ],
45
- "position_biased_input": false,
46
- "position_buckets": 256,
47
- "relative_attention": true,
48
- "share_att_key": true,
49
  "torch_dtype": "float32",
50
  "transformers_version": "4.44.2",
51
- "type_vocab_size": 0,
52
- "vocab_size": 251000
 
53
  }
 
1
  {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
3
  "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 768,
 
30
  "LABEL_5": 5,
31
  "LABEL_6": 6
32
  },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
 
 
36
  "num_attention_heads": 12,
37
  "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
 
 
 
 
 
 
 
 
 
41
  "torch_dtype": "float32",
42
  "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
  }
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.6428571428571429, "recall": 0.7346938775510204, "f1": 0.6857142857142857, "accuracy": 0.9722007722007722}, "en_pud": {"precision": 0.7941176470588235, "recall": 0.7534883720930232, "f1": 0.7732696897374701, "accuracy": 0.9779467321496034}, "de_pud": {"precision": 0.7580645161290323, "recall": 0.7237728585178056, "f1": 0.740521910388971, "accuracy": 0.9725282452768271}, "pt_pud": {"precision": 0.7786259541984732, "recall": 0.7424931756141947, "f1": 0.7601304145319051, "accuracy": 0.976759089161362}, "ru_pud": {"precision": 0.6509433962264151, "recall": 0.666023166023166, "f1": 0.6583969465648856, "accuracy": 0.9662619478171015}, "sv_pud": {"precision": 0.8324496288441146, "recall": 0.7628765792031098, "f1": 0.7961460446247464, "accuracy": 0.979555462361082}, "tl_trg": {"precision": 0.72, "recall": 0.782608695652174, "f1": 0.7499999999999999, "accuracy": 0.9836512261580381}, "tl_ugnayan": {"precision": 0.5833333333333334, "recall": 0.6363636363636364, "f1": 0.6086956521739131, "accuracy": 0.9699179580674567}, "zh_gsd": {"precision": 0.7971204188481675, "recall": 0.7940026075619296, "f1": 0.7955584585238406, "accuracy": 0.973942723942724}, "zh_gsdsimp": {"precision": 0.8270777479892761, "recall": 0.8086500655307994, "f1": 0.8177601060304838, "accuracy": 0.9756909756909757}, "hr_set": {"precision": 0.8910120311394196, "recall": 0.8973627940128297, "f1": 0.8941761363636364, "accuracy": 0.9865210222588623}, "da_ddt": {"precision": 0.7810026385224275, "recall": 0.6621923937360179, "f1": 0.7167070217917676, "accuracy": 0.9791479596927067}, "en_ewt": {"precision": 0.8009756097560976, "recall": 0.7545955882352942, "f1": 0.7770941788925698, "accuracy": 0.9778858030840339}, "pt_bosque": {"precision": 0.7992388201712655, "recall": 0.691358024691358, "f1": 0.7413945278022948, "accuracy": 0.9738805970149254}, "sr_set": {"precision": 0.9048751486325802, "recall": 0.898465171192444, "f1": 0.9016587677725119, "accuracy": 0.9857280448296997}, "sk_snk": {"precision": 0.731995277449823, "recall": 0.6775956284153005, "f1": 0.7037457434733257, "accuracy": 0.9608982412060302}, "sv_talbanken": {"precision": 0.8514851485148515, "recall": 0.8775510204081632, "f1": 0.864321608040201, "accuracy": 0.9974481032536684}}
 
1
+ {"ceb_gja": {"precision": 0.44594594594594594, "recall": 0.673469387755102, "f1": 0.5365853658536585, "accuracy": 0.9482625482625483}, "en_pud": {"precision": 0.7542120911793855, "recall": 0.707906976744186, "f1": 0.7303262955854126, "accuracy": 0.9746883264072534}, "de_pud": {"precision": 0.7038934426229508, "recall": 0.6612127045235804, "f1": 0.6818858560794044, "accuracy": 0.9671839107402372}, "pt_pud": {"precision": 0.780564263322884, "recall": 0.6797088262056415, "f1": 0.7266536964980544, "accuracy": 0.9725295851668304}, "ru_pud": {"precision": 0.6280552603613178, "recall": 0.5704633204633205, "f1": 0.5978755690440061, "accuracy": 0.9580470162748643}, "sv_pud": {"precision": 0.7890204520990313, "recall": 0.7123420796890184, "f1": 0.7487231869254342, "accuracy": 0.9742084294401342}, "tl_trg": {"precision": 0.6666666666666666, "recall": 0.782608695652174, "f1": 0.72, "accuracy": 0.9822888283378747}, "tl_ugnayan": {"precision": 0.5, "recall": 0.5454545454545454, "f1": 0.5217391304347826, "accuracy": 0.9653600729261622}, "zh_gsd": {"precision": 0.42066420664206644, "recall": 0.14863102998696218, "f1": 0.21965317919075147, "accuracy": 0.9029304029304029}, "zh_gsdsimp": {"precision": 0.42543859649122806, "recall": 0.127129750982962, "f1": 0.19576185671039356, "accuracy": 0.9024309024309024}, "hr_set": {"precision": 0.7464788732394366, "recall": 0.6421952957947256, "f1": 0.6904214559386973, "accuracy": 0.9617889530090684}, "da_ddt": {"precision": 0.7569832402234636, "recall": 0.6062639821029083, "f1": 0.6732919254658385, "accuracy": 0.9753566796368353}, "en_ewt": {"precision": 0.7956131605184447, "recall": 0.7334558823529411, "f1": 0.763271162123386, "accuracy": 0.9762919870900905}, "pt_bosque": {"precision": 0.7508055853920516, "recall": 0.5753086419753086, "f1": 0.6514445479962722, "accuracy": 0.963048833502391}, "sr_set": {"precision": 0.7551867219917012, "recall": 0.6446280991735537, "f1": 0.6955414012738853, "accuracy": 0.9533315821731897}, "sk_snk": {"precision": 0.6048484848484849, "recall": 0.5453551912568306, "f1": 0.5735632183908046, "accuracy": 0.9422895728643216}, "sv_talbanken": {"precision": 0.7627906976744186, "recall": 0.8367346938775511, "f1": 0.7980535279805352, "accuracy": 0.9960249300682141}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa2ac0d5e04a20361c3a2fabce044b48897b2cc3f6ec55e0aa84e64e255a1972
3
- size 944366708
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fcb9e43b9848329b0b5557fbc0cafbbba2bee9cdd963395a8ffbbdcc1cf0e92
3
+ size 939737140
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3118a5d1688cafa7c4d35f002148af1ed82d5d983ab01916e3ffce3750a81044
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe2ffe61ae04710e7eeeb683e47c5f31255795d636a839f63cee6fcbf92aef4b
3
  size 5304