haryoaw commited on
Commit
f96fdbf
1 Parent(s): 8c920cc

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +89 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_en
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-po-ner-full_data-univner_full66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-po-ner-full_data-univner_full66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_en](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_en) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.4704
25
+ - Precision: 0.7639
26
+ - Recall: 0.7236
27
+ - F1: 0.7432
28
+ - Accuracy: 0.9788
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.9997 | 1.2755 | 500 | 0.7818 | 0.4929 | 0.4286 | 0.4585 | 0.9622 |
60
+ | 0.4472 | 2.5510 | 1000 | 0.5948 | 0.6438 | 0.6398 | 0.6417 | 0.9734 |
61
+ | 0.3048 | 3.8265 | 1500 | 0.5434 | 0.7053 | 0.6936 | 0.6994 | 0.9768 |
62
+ | 0.2301 | 5.1020 | 2000 | 0.5331 | 0.7080 | 0.7205 | 0.7142 | 0.9768 |
63
+ | 0.19 | 6.3776 | 2500 | 0.5176 | 0.7118 | 0.7236 | 0.7177 | 0.9766 |
64
+ | 0.1622 | 7.6531 | 3000 | 0.5157 | 0.7330 | 0.7050 | 0.7187 | 0.9778 |
65
+ | 0.1461 | 8.9286 | 3500 | 0.5090 | 0.7553 | 0.6967 | 0.7248 | 0.9775 |
66
+ | 0.1331 | 10.2041 | 4000 | 0.4857 | 0.7558 | 0.7081 | 0.7312 | 0.9781 |
67
+ | 0.123 | 11.4796 | 4500 | 0.5082 | 0.7566 | 0.7081 | 0.7316 | 0.9784 |
68
+ | 0.1134 | 12.7551 | 5000 | 0.5113 | 0.7440 | 0.7008 | 0.7217 | 0.9775 |
69
+ | 0.109 | 14.0306 | 5500 | 0.5122 | 0.7559 | 0.6925 | 0.7229 | 0.9773 |
70
+ | 0.1045 | 15.3061 | 6000 | 0.4942 | 0.7362 | 0.7164 | 0.7261 | 0.9779 |
71
+ | 0.1005 | 16.5816 | 6500 | 0.4817 | 0.7770 | 0.7143 | 0.7443 | 0.9794 |
72
+ | 0.0967 | 17.8571 | 7000 | 0.4947 | 0.7642 | 0.7081 | 0.7351 | 0.9782 |
73
+ | 0.094 | 19.1327 | 7500 | 0.4737 | 0.7527 | 0.7215 | 0.7368 | 0.9785 |
74
+ | 0.0917 | 20.4082 | 8000 | 0.4815 | 0.7669 | 0.7153 | 0.7402 | 0.9786 |
75
+ | 0.0889 | 21.6837 | 8500 | 0.4797 | 0.7783 | 0.7195 | 0.7477 | 0.9791 |
76
+ | 0.0885 | 22.9592 | 9000 | 0.4824 | 0.7584 | 0.7215 | 0.7395 | 0.9783 |
77
+ | 0.0866 | 24.2347 | 9500 | 0.4557 | 0.7630 | 0.7164 | 0.7389 | 0.9794 |
78
+ | 0.0855 | 25.5102 | 10000 | 0.4618 | 0.7749 | 0.7236 | 0.7484 | 0.9797 |
79
+ | 0.0851 | 26.7857 | 10500 | 0.4466 | 0.7641 | 0.7443 | 0.7541 | 0.9800 |
80
+ | 0.0837 | 28.0612 | 11000 | 0.4526 | 0.7725 | 0.7381 | 0.7549 | 0.9795 |
81
+ | 0.0834 | 29.3367 | 11500 | 0.4704 | 0.7639 | 0.7236 | 0.7432 | 0.9788 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.44.2
87
+ - Pytorch 2.1.1+cu121
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_en",
3
+ "architectures": [
4
+ "DebertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 6,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.32710280373831774, "recall": 0.7142857142857143, "f1": 0.4487179487179487, "accuracy": 0.9281853281853282}, "en_pud": {"precision": 0.7364798426745329, "recall": 0.6967441860465117, "f1": 0.7160611854684512, "accuracy": 0.9730827351718927}, "de_pud": {"precision": 0.6587982832618026, "recall": 0.5909528392685275, "f1": 0.6230339928970066, "accuracy": 0.962027096713703}, "pt_pud": {"precision": 0.70625, "recall": 0.6169244767970883, "f1": 0.6585721223895095, "accuracy": 0.9655231341051822}, "ru_pud": {"precision": 0.5360501567398119, "recall": 0.4951737451737452, "f1": 0.5148018063221274, "accuracy": 0.9514337380521829}, "sv_pud": {"precision": 0.7566320645905421, "recall": 0.6375121477162293, "f1": 0.6919831223628691, "accuracy": 0.9691235059760956}, "tl_trg": {"precision": 0.2857142857142857, "recall": 0.6956521739130435, "f1": 0.4050632911392405, "accuracy": 0.9277929155313351}, "tl_ugnayan": {"precision": 0.273972602739726, "recall": 0.6060606060606061, "f1": 0.3773584905660377, "accuracy": 0.9361896080218779}, "zh_gsd": {"precision": 0.4166666666666667, "recall": 0.20860495436766624, "f1": 0.27801911381407474, "accuracy": 0.9069264069264069}, "zh_gsdsimp": {"precision": 0.43007915567282323, "recall": 0.21363040629095675, "f1": 0.28546409807355516, "accuracy": 0.9075091575091575}, "hr_set": {"precision": 0.6354166666666666, "recall": 0.5652173913043478, "f1": 0.5982648057336853, "accuracy": 0.9518136850783182}, "da_ddt": {"precision": 0.6771428571428572, "recall": 0.5302013422818792, "f1": 0.5947302383939775, "accuracy": 0.9708670058864611}, "en_ewt": {"precision": 0.7904483430799221, "recall": 0.7454044117647058, "f1": 0.7672658467360455, "accuracy": 0.977009204287365}, "pt_bosque": {"precision": 0.6593521421107628, "recall": 0.5193415637860083, "f1": 0.5810313075506446, "accuracy": 0.9572887987248225}, "sr_set": {"precision": 0.649867374005305, "recall": 0.5785123966942148, "f1": 0.6121174266083698, "accuracy": 0.9438753173977761}, "sk_snk": {"precision": 0.5450346420323325, "recall": 0.5158469945355191, "f1": 0.5300393037619315, "accuracy": 0.9336526381909548}, "sv_talbanken": {"precision": 0.7647058823529411, "recall": 0.7295918367346939, "f1": 0.7467362924281984, "accuracy": 0.9950925062570545}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b67f050bd2c9656479addfe58229a996661f27cd30b3f07ce132d9aaf0f4500
3
+ size 944366708
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb73950b80a539f5d98b5eec0617db3bf6000378a9f888f056c92379099f3791
3
+ size 5304