scenario-kd-po-ner-half-mdeberta_data-univner_full66
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:
- Loss: 72.5559
- Precision: 0.6792
- Recall: 0.6229
- F1: 0.6498
- Accuracy: 0.9661
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 66
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
171.7606 | 0.29 | 500 | 133.7154 | 0.0 | 0.0 | 0.0 | 0.9241 |
125.3819 | 0.58 | 1000 | 118.8982 | 0.0 | 0.0 | 0.0 | 0.9241 |
113.475 | 0.87 | 1500 | 108.9966 | 0.1272 | 0.0092 | 0.0172 | 0.9252 |
104.3223 | 1.16 | 2000 | 100.9579 | 0.2417 | 0.1160 | 0.1568 | 0.9331 |
96.8596 | 1.46 | 2500 | 95.4198 | 0.2974 | 0.1661 | 0.2131 | 0.9368 |
92.6352 | 1.75 | 3000 | 90.9541 | 0.4272 | 0.2581 | 0.3218 | 0.9426 |
88.4087 | 2.04 | 3500 | 87.7702 | 0.5057 | 0.3189 | 0.3911 | 0.9466 |
84.9655 | 2.33 | 4000 | 85.1105 | 0.5218 | 0.3844 | 0.4427 | 0.9507 |
82.6755 | 2.62 | 4500 | 83.3483 | 0.5638 | 0.3848 | 0.4574 | 0.9511 |
80.9047 | 2.91 | 5000 | 81.5072 | 0.5652 | 0.4416 | 0.4958 | 0.9547 |
78.7895 | 3.2 | 5500 | 80.3758 | 0.5558 | 0.5207 | 0.5377 | 0.9574 |
77.711 | 3.49 | 6000 | 79.3018 | 0.5889 | 0.5400 | 0.5634 | 0.9591 |
76.5548 | 3.78 | 6500 | 78.2521 | 0.6095 | 0.5271 | 0.5653 | 0.9596 |
75.9175 | 4.08 | 7000 | 77.5573 | 0.6196 | 0.5468 | 0.5809 | 0.9602 |
74.7471 | 4.37 | 7500 | 77.0193 | 0.6033 | 0.5641 | 0.5831 | 0.9603 |
73.9283 | 4.66 | 8000 | 76.3540 | 0.6221 | 0.5842 | 0.6025 | 0.9622 |
73.7326 | 4.95 | 8500 | 75.7315 | 0.6342 | 0.5937 | 0.6133 | 0.9631 |
73.0742 | 5.24 | 9000 | 75.2493 | 0.6512 | 0.5800 | 0.6136 | 0.9634 |
72.4297 | 5.53 | 9500 | 75.0674 | 0.6474 | 0.5933 | 0.6191 | 0.9633 |
71.8295 | 5.82 | 10000 | 74.5560 | 0.6396 | 0.6154 | 0.6273 | 0.9642 |
71.572 | 6.11 | 10500 | 74.2151 | 0.6623 | 0.6081 | 0.6341 | 0.9645 |
71.1983 | 6.4 | 11000 | 73.9930 | 0.6776 | 0.5926 | 0.6322 | 0.9649 |
71.0043 | 6.69 | 11500 | 73.8112 | 0.6733 | 0.5979 | 0.6333 | 0.9644 |
70.7001 | 6.99 | 12000 | 73.5677 | 0.6763 | 0.6066 | 0.6395 | 0.9653 |
70.4901 | 7.28 | 12500 | 73.4664 | 0.6802 | 0.5918 | 0.6329 | 0.9647 |
70.1377 | 7.57 | 13000 | 73.1932 | 0.6639 | 0.6272 | 0.6450 | 0.9661 |
69.8947 | 7.86 | 13500 | 73.0598 | 0.6804 | 0.6211 | 0.6494 | 0.9663 |
69.7927 | 8.15 | 14000 | 72.9965 | 0.6746 | 0.6242 | 0.6484 | 0.9658 |
69.5853 | 8.44 | 14500 | 72.8758 | 0.6715 | 0.6188 | 0.6441 | 0.9655 |
69.5151 | 8.73 | 15000 | 72.6126 | 0.6782 | 0.6275 | 0.6518 | 0.9664 |
69.2025 | 9.02 | 15500 | 72.7029 | 0.6640 | 0.6220 | 0.6423 | 0.9654 |
69.2257 | 9.31 | 16000 | 72.5754 | 0.6779 | 0.6236 | 0.6496 | 0.9660 |
69.145 | 9.61 | 16500 | 72.4798 | 0.6744 | 0.6203 | 0.6462 | 0.9665 |
69.0684 | 9.9 | 17000 | 72.5559 | 0.6792 | 0.6229 | 0.6498 | 0.9661 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 0
Model tree for haryoaw/scenario-kd-po-ner-half-mdeberta_data-univner_full66
Base model
FacebookAI/xlm-roberta-base