Edit model card

scenario-kd-po-ner-half-xlmr_data-univner_full66

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 119.1294
  • Precision: 0.4508
  • Recall: 0.4147
  • F1: 0.4320
  • Accuracy: 0.9488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
284.146 0.29 500 212.3445 0.0 0.0 0.0 0.9241
195.0927 0.58 1000 183.6382 0.1678 0.0104 0.0196 0.9248
175.6188 0.87 1500 169.2953 0.2481 0.0462 0.0778 0.9266
164.5343 1.16 2000 160.0481 0.25 0.0763 0.1169 0.9295
155.7977 1.46 2500 153.3116 0.2572 0.1597 0.1971 0.9334
150.8056 1.75 3000 147.9380 0.2919 0.1860 0.2272 0.9354
145.886 2.04 3500 144.0042 0.3123 0.2203 0.2584 0.9363
141.6606 2.33 4000 140.6623 0.3362 0.2148 0.2621 0.9378
138.9315 2.62 4500 137.7953 0.3395 0.2557 0.2917 0.9390
136.3904 2.91 5000 135.3107 0.3432 0.2940 0.3167 0.9407
133.4631 3.2 5500 133.3555 0.3602 0.3239 0.3411 0.9419
131.8994 3.49 6000 131.5568 0.3743 0.3372 0.3548 0.9421
130.0259 3.78 6500 130.1601 0.3590 0.3480 0.3534 0.9425
128.8084 4.08 7000 128.5461 0.3878 0.3197 0.3505 0.9431
126.9491 4.37 7500 127.3171 0.4126 0.3611 0.3852 0.9444
125.7889 4.66 8000 126.2976 0.3964 0.3598 0.3773 0.9449
125.1757 4.95 8500 125.3498 0.3985 0.3718 0.3847 0.9448
124.1594 5.24 9000 124.6697 0.4158 0.3617 0.3869 0.9457
122.9069 5.53 9500 123.8015 0.4246 0.3735 0.3975 0.9457
121.9428 5.82 10000 123.1179 0.4038 0.3846 0.3940 0.9461
121.4957 6.11 10500 122.5535 0.4256 0.3835 0.4035 0.9468
120.8021 6.4 11000 121.9703 0.4315 0.3887 0.4090 0.9467
120.6592 6.69 11500 121.5849 0.4290 0.4178 0.4233 0.9478
119.7714 6.99 12000 121.0852 0.4380 0.4115 0.4243 0.9479
119.6204 7.28 12500 120.7726 0.4477 0.3894 0.4165 0.9478
118.8015 7.57 13000 120.4320 0.4449 0.4093 0.4264 0.9480
118.8596 7.86 13500 120.1600 0.4454 0.4053 0.4244 0.9481
118.376 8.15 14000 119.9419 0.4406 0.4047 0.4219 0.9484
118.1562 8.44 14500 119.6902 0.4427 0.4099 0.4257 0.9483
117.8396 8.73 15000 119.5728 0.4410 0.4155 0.4279 0.9484
117.496 9.02 15500 119.4226 0.4450 0.4188 0.4315 0.9486
117.5852 9.31 16000 119.3681 0.4498 0.4096 0.4288 0.9486
117.6006 9.61 16500 119.2253 0.4467 0.4048 0.4247 0.9487
117.3602 9.9 17000 119.1294 0.4508 0.4147 0.4320 0.9488

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-kd-po-ner-half-xlmr_data-univner_full66