Edit model card

scenario-kd-po-ner-half_data-univner_full55

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3977
  • Precision: 0.8322
  • Recall: 0.8250
  • F1: 0.8286
  • Accuracy: 0.9824

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9599 0.2910 500 0.7292 0.7506 0.7468 0.7487 0.9756
0.5565 0.5821 1000 0.6142 0.7746 0.7775 0.7761 0.9783
0.5029 0.8731 1500 0.5821 0.7811 0.7804 0.7807 0.9786
0.4411 1.1641 2000 0.5625 0.7944 0.7860 0.7902 0.9793
0.3891 1.4552 2500 0.5504 0.7850 0.7990 0.7919 0.9791
0.3893 1.7462 3000 0.5271 0.7792 0.8126 0.7955 0.9791
0.3654 2.0373 3500 0.5237 0.7939 0.8031 0.7985 0.9797
0.3332 2.3283 4000 0.5146 0.7948 0.8204 0.8074 0.9803
0.3191 2.6193 4500 0.5136 0.7956 0.8100 0.8027 0.9801
0.3158 2.9104 5000 0.5068 0.7983 0.8136 0.8059 0.9803
0.2954 3.2014 5500 0.5005 0.7992 0.8158 0.8074 0.9804
0.282 3.4924 6000 0.4871 0.8028 0.8204 0.8115 0.9804
0.2806 3.7835 6500 0.4767 0.8069 0.8104 0.8087 0.9803
0.2693 4.0745 7000 0.4729 0.7969 0.8150 0.8058 0.9801
0.2524 4.3655 7500 0.4877 0.8169 0.8038 0.8103 0.9806
0.2499 4.6566 8000 0.4748 0.8036 0.8134 0.8085 0.9803
0.2513 4.9476 8500 0.4685 0.8154 0.8080 0.8117 0.9806
0.2311 5.2386 9000 0.4729 0.8205 0.8065 0.8134 0.9808
0.228 5.5297 9500 0.4614 0.8142 0.8126 0.8134 0.9812
0.2281 5.8207 10000 0.4755 0.8128 0.8124 0.8126 0.9808
0.2231 6.1118 10500 0.4550 0.8135 0.8160 0.8148 0.9810
0.2096 6.4028 11000 0.4833 0.8254 0.7918 0.8082 0.9802
0.2114 6.6938 11500 0.4562 0.8091 0.8091 0.8091 0.9807
0.2085 6.9849 12000 0.4630 0.8141 0.8083 0.8112 0.9807
0.1921 7.2759 12500 0.4601 0.8149 0.8201 0.8175 0.9809
0.1954 7.5669 13000 0.4489 0.8231 0.8117 0.8174 0.9810
0.1945 7.8580 13500 0.4572 0.8169 0.8038 0.8103 0.9806
0.1889 8.1490 14000 0.4604 0.8202 0.8091 0.8146 0.9807
0.1821 8.4400 14500 0.4510 0.8178 0.8204 0.8191 0.9810
0.1815 8.7311 15000 0.4462 0.8179 0.8270 0.8224 0.9814
0.1795 9.0221 15500 0.4396 0.8125 0.8160 0.8143 0.9810
0.1711 9.3132 16000 0.4452 0.8179 0.8139 0.8159 0.9811
0.1703 9.6042 16500 0.4469 0.8178 0.8140 0.8159 0.9813
0.1705 9.8952 17000 0.4361 0.8110 0.8234 0.8172 0.9811
0.1662 10.1863 17500 0.4399 0.8241 0.8204 0.8222 0.9816
0.1618 10.4773 18000 0.4344 0.8123 0.8247 0.8184 0.9817
0.1601 10.7683 18500 0.4435 0.8184 0.8116 0.8150 0.9810
0.16 11.0594 19000 0.4434 0.8417 0.8029 0.8218 0.9814
0.1511 11.3504 19500 0.4432 0.8323 0.8191 0.8256 0.9816
0.1531 11.6414 20000 0.4323 0.8223 0.8194 0.8208 0.9816
0.1532 11.9325 20500 0.4339 0.8201 0.8189 0.8195 0.9811
0.1481 12.2235 21000 0.4232 0.8148 0.8238 0.8193 0.9817
0.1455 12.5146 21500 0.4300 0.8196 0.8260 0.8228 0.9819
0.1469 12.8056 22000 0.4328 0.8244 0.8182 0.8213 0.9813
0.1428 13.0966 22500 0.4262 0.8236 0.8300 0.8268 0.9817
0.1402 13.3877 23000 0.4295 0.8181 0.8198 0.8190 0.9812
0.1407 13.6787 23500 0.4317 0.8180 0.8224 0.8202 0.9813
0.1413 13.9697 24000 0.4279 0.8240 0.8160 0.8200 0.9816
0.1342 14.2608 24500 0.4316 0.8184 0.8153 0.8169 0.9812
0.1371 14.5518 25000 0.4215 0.8278 0.8254 0.8266 0.9817
0.1337 14.8428 25500 0.4395 0.8251 0.8120 0.8185 0.9811
0.1343 15.1339 26000 0.4257 0.8211 0.8235 0.8223 0.9814
0.131 15.4249 26500 0.4299 0.8345 0.8072 0.8206 0.9812
0.1315 15.7159 27000 0.4187 0.8298 0.8199 0.8248 0.9817
0.1305 16.0070 27500 0.4220 0.8269 0.8175 0.8222 0.9817
0.1268 16.2980 28000 0.4201 0.8257 0.8162 0.8209 0.9814
0.1258 16.5891 28500 0.4210 0.8204 0.8286 0.8245 0.9819
0.1275 16.8801 29000 0.4212 0.8279 0.8169 0.8224 0.9813
0.1256 17.1711 29500 0.4155 0.8269 0.8166 0.8217 0.9814
0.1218 17.4622 30000 0.4119 0.8236 0.8218 0.8227 0.9816
0.1234 17.7532 30500 0.4223 0.8295 0.8194 0.8244 0.9818
0.1216 18.0442 31000 0.4184 0.8353 0.8218 0.8285 0.9820
0.1189 18.3353 31500 0.4211 0.8323 0.8184 0.8253 0.9820
0.1201 18.6263 32000 0.4168 0.8302 0.8198 0.8250 0.9818
0.1209 18.9173 32500 0.4124 0.8303 0.8204 0.8253 0.9817
0.1187 19.2084 33000 0.4209 0.8304 0.8087 0.8194 0.9814
0.1178 19.4994 33500 0.4143 0.8271 0.8199 0.8235 0.9817
0.1168 19.7905 34000 0.4179 0.8304 0.8169 0.8236 0.9815
0.118 20.0815 34500 0.4162 0.8254 0.8181 0.8217 0.9816
0.1161 20.3725 35000 0.4174 0.8287 0.8150 0.8218 0.9817
0.1147 20.6636 35500 0.4129 0.8278 0.8246 0.8262 0.9821
0.114 20.9546 36000 0.4091 0.8303 0.8217 0.8260 0.9819
0.1133 21.2456 36500 0.4167 0.8248 0.8224 0.8236 0.9816
0.1126 21.5367 37000 0.4105 0.8314 0.8176 0.8245 0.9817
0.1126 21.8277 37500 0.4052 0.8302 0.8225 0.8264 0.9820
0.1111 22.1187 38000 0.4073 0.8298 0.8221 0.8259 0.9822
0.1108 22.4098 38500 0.4100 0.8324 0.8257 0.8291 0.9820
0.1103 22.7008 39000 0.4092 0.8296 0.8160 0.8228 0.9816
0.1114 22.9919 39500 0.4029 0.8322 0.8243 0.8282 0.9821
0.1096 23.2829 40000 0.4051 0.8292 0.8238 0.8265 0.9820
0.1088 23.5739 40500 0.4020 0.8275 0.8195 0.8235 0.9818
0.1091 23.8650 41000 0.4063 0.8256 0.8194 0.8224 0.9815
0.1079 24.1560 41500 0.4015 0.8284 0.8218 0.8251 0.9819
0.108 24.4470 42000 0.4058 0.8349 0.8217 0.8282 0.9822
0.1081 24.7381 42500 0.4035 0.8301 0.8207 0.8254 0.9817
0.1079 25.0291 43000 0.4029 0.8306 0.8235 0.8271 0.9820
0.1065 25.3201 43500 0.4053 0.8309 0.8235 0.8272 0.9818
0.1062 25.6112 44000 0.4046 0.8276 0.8188 0.8232 0.9818
0.1063 25.9022 44500 0.4050 0.8323 0.8197 0.8259 0.9820
0.1054 26.1932 45000 0.4000 0.8310 0.8267 0.8289 0.9820
0.1048 26.4843 45500 0.4063 0.8311 0.8227 0.8269 0.9819
0.105 26.7753 46000 0.3994 0.8315 0.8233 0.8274 0.9821
0.104 27.0664 46500 0.4046 0.8320 0.8198 0.8259 0.9820
0.1038 27.3574 47000 0.4042 0.8312 0.8243 0.8277 0.9820
0.1042 27.6484 47500 0.4006 0.8340 0.8276 0.8308 0.9821
0.1041 27.9395 48000 0.4000 0.8344 0.8244 0.8294 0.9823
0.1036 28.2305 48500 0.4027 0.8325 0.8220 0.8272 0.9819
0.1039 28.5215 49000 0.3972 0.8339 0.8257 0.8298 0.9823
0.1023 28.8126 49500 0.3960 0.8310 0.8267 0.8289 0.9824
0.103 29.1036 50000 0.4038 0.8320 0.8188 0.8253 0.9817
0.102 29.3946 50500 0.4010 0.8287 0.8211 0.8249 0.9818
0.1025 29.6857 51000 0.3960 0.8361 0.8277 0.8319 0.9823
0.1025 29.9767 51500 0.3977 0.8322 0.8250 0.8286 0.9824

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-po-ner-half_data-univner_full55