scenario-kd-pre-ner-full_data-univner_full55
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4412
- Precision: 0.8211
- Recall: 0.8091
- F1: 0.8151
- Accuracy: 0.9808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.3575 | 0.2910 | 500 | 0.9103 | 0.6705 | 0.6653 | 0.6679 | 0.9689 |
0.7321 | 0.5821 | 1000 | 0.7344 | 0.7247 | 0.7273 | 0.7260 | 0.9738 |
0.6472 | 0.8731 | 1500 | 0.6643 | 0.7405 | 0.7642 | 0.7522 | 0.9759 |
0.5635 | 1.1641 | 2000 | 0.6244 | 0.7627 | 0.7720 | 0.7673 | 0.9775 |
0.4932 | 1.4552 | 2500 | 0.6102 | 0.7445 | 0.7855 | 0.7644 | 0.9760 |
0.4871 | 1.7462 | 3000 | 0.5773 | 0.7682 | 0.7847 | 0.7764 | 0.9778 |
0.4543 | 2.0373 | 3500 | 0.5692 | 0.7888 | 0.7834 | 0.7861 | 0.9786 |
0.4077 | 2.3283 | 4000 | 0.5501 | 0.7671 | 0.8003 | 0.7834 | 0.9785 |
0.3882 | 2.6193 | 4500 | 0.5512 | 0.7822 | 0.7831 | 0.7827 | 0.9784 |
0.3826 | 2.9104 | 5000 | 0.5284 | 0.7860 | 0.7934 | 0.7897 | 0.9789 |
0.3527 | 3.2014 | 5500 | 0.5283 | 0.7854 | 0.7984 | 0.7919 | 0.9793 |
0.3353 | 3.4924 | 6000 | 0.5180 | 0.7964 | 0.8023 | 0.7993 | 0.9794 |
0.3336 | 3.7835 | 6500 | 0.5079 | 0.7831 | 0.8042 | 0.7935 | 0.9792 |
0.3176 | 4.0745 | 7000 | 0.4999 | 0.7927 | 0.8140 | 0.8032 | 0.9798 |
0.2974 | 4.3655 | 7500 | 0.4975 | 0.8068 | 0.8044 | 0.8056 | 0.9797 |
0.2932 | 4.6566 | 8000 | 0.5007 | 0.7983 | 0.7917 | 0.7950 | 0.9792 |
0.291 | 4.9476 | 8500 | 0.5011 | 0.7919 | 0.7979 | 0.7949 | 0.9788 |
0.2684 | 5.2386 | 9000 | 0.5011 | 0.8014 | 0.8032 | 0.8023 | 0.9801 |
0.2636 | 5.5297 | 9500 | 0.4938 | 0.8079 | 0.7943 | 0.8010 | 0.9796 |
0.2636 | 5.8207 | 10000 | 0.4924 | 0.8067 | 0.8009 | 0.8038 | 0.9800 |
0.255 | 6.1118 | 10500 | 0.4796 | 0.7997 | 0.8075 | 0.8036 | 0.9804 |
0.2417 | 6.4028 | 11000 | 0.4982 | 0.8030 | 0.7990 | 0.8010 | 0.9796 |
0.2423 | 6.6938 | 11500 | 0.4827 | 0.7932 | 0.8129 | 0.8029 | 0.9797 |
0.2377 | 6.9849 | 12000 | 0.4774 | 0.8135 | 0.8080 | 0.8107 | 0.9805 |
0.2208 | 7.2759 | 12500 | 0.4759 | 0.8157 | 0.8078 | 0.8117 | 0.9809 |
0.2228 | 7.5669 | 13000 | 0.4669 | 0.8140 | 0.8139 | 0.8139 | 0.9808 |
0.2224 | 7.8580 | 13500 | 0.4762 | 0.8111 | 0.8088 | 0.8099 | 0.9806 |
0.2154 | 8.1490 | 14000 | 0.4756 | 0.8163 | 0.8085 | 0.8124 | 0.9806 |
0.2057 | 8.4400 | 14500 | 0.4751 | 0.8127 | 0.8097 | 0.8112 | 0.9805 |
0.2072 | 8.7311 | 15000 | 0.4678 | 0.8035 | 0.8146 | 0.8090 | 0.9803 |
0.2023 | 9.0221 | 15500 | 0.4678 | 0.8213 | 0.8065 | 0.8139 | 0.9805 |
0.1951 | 9.3132 | 16000 | 0.4665 | 0.7996 | 0.8096 | 0.8046 | 0.9802 |
0.1928 | 9.6042 | 16500 | 0.4695 | 0.8157 | 0.8106 | 0.8131 | 0.9805 |
0.1925 | 9.8952 | 17000 | 0.4607 | 0.8112 | 0.8127 | 0.8120 | 0.9805 |
0.1876 | 10.1863 | 17500 | 0.4573 | 0.8087 | 0.8247 | 0.8166 | 0.9811 |
0.1825 | 10.4773 | 18000 | 0.4520 | 0.8147 | 0.8293 | 0.8220 | 0.9817 |
0.1796 | 10.7683 | 18500 | 0.4566 | 0.8137 | 0.8146 | 0.8141 | 0.9807 |
0.1809 | 11.0594 | 19000 | 0.4524 | 0.8231 | 0.8137 | 0.8184 | 0.9810 |
0.1704 | 11.3504 | 19500 | 0.4593 | 0.8130 | 0.8156 | 0.8143 | 0.9809 |
0.1729 | 11.6414 | 20000 | 0.4549 | 0.8225 | 0.8075 | 0.8149 | 0.9809 |
0.173 | 11.9325 | 20500 | 0.4620 | 0.8166 | 0.8166 | 0.8166 | 0.9809 |
0.1656 | 12.2235 | 21000 | 0.4467 | 0.8015 | 0.8070 | 0.8042 | 0.9804 |
0.1623 | 12.5146 | 21500 | 0.4504 | 0.8139 | 0.8247 | 0.8193 | 0.9813 |
0.1651 | 12.8056 | 22000 | 0.4496 | 0.8208 | 0.8142 | 0.8175 | 0.9809 |
0.1595 | 13.0966 | 22500 | 0.4448 | 0.8141 | 0.8172 | 0.8157 | 0.9810 |
0.1561 | 13.3877 | 23000 | 0.4496 | 0.8187 | 0.8162 | 0.8174 | 0.9811 |
0.1576 | 13.6787 | 23500 | 0.4509 | 0.8198 | 0.8124 | 0.8161 | 0.9810 |
0.1563 | 13.9697 | 24000 | 0.4445 | 0.8205 | 0.8119 | 0.8162 | 0.9809 |
0.15 | 14.2608 | 24500 | 0.4398 | 0.8179 | 0.8152 | 0.8165 | 0.9812 |
0.153 | 14.5518 | 25000 | 0.4460 | 0.8281 | 0.8071 | 0.8175 | 0.9811 |
0.1482 | 14.8428 | 25500 | 0.4480 | 0.8246 | 0.8145 | 0.8195 | 0.9809 |
0.1485 | 15.1339 | 26000 | 0.4438 | 0.8199 | 0.8175 | 0.8187 | 0.9810 |
0.1449 | 15.4249 | 26500 | 0.4423 | 0.8216 | 0.8106 | 0.8160 | 0.9808 |
0.1455 | 15.7159 | 27000 | 0.4440 | 0.8181 | 0.8078 | 0.8129 | 0.9807 |
0.1438 | 16.0070 | 27500 | 0.4437 | 0.8298 | 0.8119 | 0.8207 | 0.9812 |
0.1396 | 16.2980 | 28000 | 0.4412 | 0.8211 | 0.8091 | 0.8151 | 0.9808 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for haryoaw/scenario-kd-pre-ner-full_data-univner_full55
Base model
FacebookAI/xlm-roberta-base