Edit model card

scenario-kd-pre-ner-full_data-univner_full55

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4412
  • Precision: 0.8211
  • Recall: 0.8091
  • F1: 0.8151
  • Accuracy: 0.9808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.3575 0.2910 500 0.9103 0.6705 0.6653 0.6679 0.9689
0.7321 0.5821 1000 0.7344 0.7247 0.7273 0.7260 0.9738
0.6472 0.8731 1500 0.6643 0.7405 0.7642 0.7522 0.9759
0.5635 1.1641 2000 0.6244 0.7627 0.7720 0.7673 0.9775
0.4932 1.4552 2500 0.6102 0.7445 0.7855 0.7644 0.9760
0.4871 1.7462 3000 0.5773 0.7682 0.7847 0.7764 0.9778
0.4543 2.0373 3500 0.5692 0.7888 0.7834 0.7861 0.9786
0.4077 2.3283 4000 0.5501 0.7671 0.8003 0.7834 0.9785
0.3882 2.6193 4500 0.5512 0.7822 0.7831 0.7827 0.9784
0.3826 2.9104 5000 0.5284 0.7860 0.7934 0.7897 0.9789
0.3527 3.2014 5500 0.5283 0.7854 0.7984 0.7919 0.9793
0.3353 3.4924 6000 0.5180 0.7964 0.8023 0.7993 0.9794
0.3336 3.7835 6500 0.5079 0.7831 0.8042 0.7935 0.9792
0.3176 4.0745 7000 0.4999 0.7927 0.8140 0.8032 0.9798
0.2974 4.3655 7500 0.4975 0.8068 0.8044 0.8056 0.9797
0.2932 4.6566 8000 0.5007 0.7983 0.7917 0.7950 0.9792
0.291 4.9476 8500 0.5011 0.7919 0.7979 0.7949 0.9788
0.2684 5.2386 9000 0.5011 0.8014 0.8032 0.8023 0.9801
0.2636 5.5297 9500 0.4938 0.8079 0.7943 0.8010 0.9796
0.2636 5.8207 10000 0.4924 0.8067 0.8009 0.8038 0.9800
0.255 6.1118 10500 0.4796 0.7997 0.8075 0.8036 0.9804
0.2417 6.4028 11000 0.4982 0.8030 0.7990 0.8010 0.9796
0.2423 6.6938 11500 0.4827 0.7932 0.8129 0.8029 0.9797
0.2377 6.9849 12000 0.4774 0.8135 0.8080 0.8107 0.9805
0.2208 7.2759 12500 0.4759 0.8157 0.8078 0.8117 0.9809
0.2228 7.5669 13000 0.4669 0.8140 0.8139 0.8139 0.9808
0.2224 7.8580 13500 0.4762 0.8111 0.8088 0.8099 0.9806
0.2154 8.1490 14000 0.4756 0.8163 0.8085 0.8124 0.9806
0.2057 8.4400 14500 0.4751 0.8127 0.8097 0.8112 0.9805
0.2072 8.7311 15000 0.4678 0.8035 0.8146 0.8090 0.9803
0.2023 9.0221 15500 0.4678 0.8213 0.8065 0.8139 0.9805
0.1951 9.3132 16000 0.4665 0.7996 0.8096 0.8046 0.9802
0.1928 9.6042 16500 0.4695 0.8157 0.8106 0.8131 0.9805
0.1925 9.8952 17000 0.4607 0.8112 0.8127 0.8120 0.9805
0.1876 10.1863 17500 0.4573 0.8087 0.8247 0.8166 0.9811
0.1825 10.4773 18000 0.4520 0.8147 0.8293 0.8220 0.9817
0.1796 10.7683 18500 0.4566 0.8137 0.8146 0.8141 0.9807
0.1809 11.0594 19000 0.4524 0.8231 0.8137 0.8184 0.9810
0.1704 11.3504 19500 0.4593 0.8130 0.8156 0.8143 0.9809
0.1729 11.6414 20000 0.4549 0.8225 0.8075 0.8149 0.9809
0.173 11.9325 20500 0.4620 0.8166 0.8166 0.8166 0.9809
0.1656 12.2235 21000 0.4467 0.8015 0.8070 0.8042 0.9804
0.1623 12.5146 21500 0.4504 0.8139 0.8247 0.8193 0.9813
0.1651 12.8056 22000 0.4496 0.8208 0.8142 0.8175 0.9809
0.1595 13.0966 22500 0.4448 0.8141 0.8172 0.8157 0.9810
0.1561 13.3877 23000 0.4496 0.8187 0.8162 0.8174 0.9811
0.1576 13.6787 23500 0.4509 0.8198 0.8124 0.8161 0.9810
0.1563 13.9697 24000 0.4445 0.8205 0.8119 0.8162 0.9809
0.15 14.2608 24500 0.4398 0.8179 0.8152 0.8165 0.9812
0.153 14.5518 25000 0.4460 0.8281 0.8071 0.8175 0.9811
0.1482 14.8428 25500 0.4480 0.8246 0.8145 0.8195 0.9809
0.1485 15.1339 26000 0.4438 0.8199 0.8175 0.8187 0.9810
0.1449 15.4249 26500 0.4423 0.8216 0.8106 0.8160 0.9808
0.1455 15.7159 27000 0.4440 0.8181 0.8078 0.8129 0.9807
0.1438 16.0070 27500 0.4437 0.8298 0.8119 0.8207 0.9812
0.1396 16.2980 28000 0.4412 0.8211 0.8091 0.8151 0.9808

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
235M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-pre-ner-full_data-univner_full55

Finetuned
(2532)
this model