File size: 3,244 Bytes
8be4091
0973e2f
8be4091
 
 
 
 
 
 
0973e2f
 
8be4091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full-mdeberta_data-univner_half44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-scr-ner-full-mdeberta_data-univner_half44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 364.7336
- Precision: 0.3918
- Recall: 0.4292
- F1: 0.4096
- Accuracy: 0.9267

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 44
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 637.6988      | 0.5828 | 500  | 570.9927        | 0.6154    | 0.0012 | 0.0023 | 0.9241   |
| 541.2212      | 1.1655 | 1000 | 524.6858        | 0.3571    | 0.0353 | 0.0643 | 0.9251   |
| 490.5141      | 1.7483 | 1500 | 492.2816        | 0.3048    | 0.1754 | 0.2227 | 0.9310   |
| 455.7006      | 2.3310 | 2000 | 474.9406        | 0.3064    | 0.2626 | 0.2828 | 0.9273   |
| 430.062       | 2.9138 | 2500 | 452.2111        | 0.3632    | 0.3073 | 0.3329 | 0.9298   |
| 408.0248      | 3.4965 | 3000 | 434.8791        | 0.3994    | 0.3220 | 0.3566 | 0.9341   |
| 390.2744      | 4.0793 | 3500 | 424.2673        | 0.3727    | 0.3444 | 0.3580 | 0.9307   |
| 374.3932      | 4.6620 | 4000 | 411.0975        | 0.4020    | 0.3979 | 0.3999 | 0.9328   |
| 362.2752      | 5.2448 | 4500 | 403.7659        | 0.3614    | 0.3963 | 0.3781 | 0.9239   |
| 350.9508      | 5.8275 | 5000 | 392.9673        | 0.3736    | 0.3855 | 0.3795 | 0.9296   |
| 341.7654      | 6.4103 | 5500 | 385.3136        | 0.4030    | 0.3972 | 0.4001 | 0.9302   |
| 334.4205      | 6.9930 | 6000 | 380.2038        | 0.3773    | 0.4142 | 0.3949 | 0.9263   |
| 327.3654      | 7.5758 | 6500 | 375.4951        | 0.3694    | 0.4276 | 0.3964 | 0.9227   |
| 322.1269      | 8.1585 | 7000 | 372.3464        | 0.3650    | 0.4338 | 0.3965 | 0.9209   |
| 318.558       | 8.7413 | 7500 | 366.4694        | 0.3970    | 0.4191 | 0.4078 | 0.9295   |
| 315.4182      | 9.3240 | 8000 | 365.6752        | 0.3861    | 0.4409 | 0.4117 | 0.9260   |
| 314.0958      | 9.9068 | 8500 | 364.7336        | 0.3918    | 0.4292 | 0.4096 | 0.9267   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1