File size: 6,431 Bytes
a2617b5
28a9939
a2617b5
 
 
 
 
 
 
28a9939
 
a2617b5
 
 
 
 
 
 
 
 
 
24d91ea
a2617b5
a27ed2d
 
 
 
 
a2617b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a27ed2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2617b5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full_data-univner_full55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-scr-ner-full_data-univner_full55

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6332
- Precision: 0.4469
- Recall: 0.3758
- F1: 0.4083
- Accuracy: 0.9390

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.9172        | 0.5828  | 500   | 2.8507          | 0.2157    | 0.0452 | 0.0747 | 0.9231   |
| 2.2157        | 1.1655  | 1000  | 2.5207          | 0.2360    | 0.1134 | 0.1532 | 0.9230   |
| 1.9564        | 1.7483  | 1500  | 2.5233          | 0.1706    | 0.1749 | 0.1727 | 0.9128   |
| 1.7543        | 2.3310  | 2000  | 2.4414          | 0.2175    | 0.2244 | 0.2209 | 0.9157   |
| 1.6286        | 2.9138  | 2500  | 2.2528          | 0.2500    | 0.2336 | 0.2415 | 0.9223   |
| 1.4766        | 3.4965  | 3000  | 2.0896          | 0.2944    | 0.2241 | 0.2545 | 0.9279   |
| 1.398         | 4.0793  | 3500  | 2.0471          | 0.3335    | 0.2441 | 0.2819 | 0.9303   |
| 1.2907        | 4.6620  | 4000  | 1.9739          | 0.2985    | 0.2568 | 0.2761 | 0.9294   |
| 1.2065        | 5.2448  | 4500  | 1.8564          | 0.3685    | 0.2424 | 0.2924 | 0.9344   |
| 1.1392        | 5.8275  | 5000  | 2.1380          | 0.2515    | 0.3037 | 0.2751 | 0.9172   |
| 1.0459        | 6.4103  | 5500  | 1.9090          | 0.3426    | 0.2819 | 0.3093 | 0.9320   |
| 0.9973        | 6.9930  | 6000  | 1.8167          | 0.3556    | 0.3015 | 0.3263 | 0.9350   |
| 0.9106        | 7.5758  | 6500  | 1.8701          | 0.3736    | 0.2884 | 0.3255 | 0.9326   |
| 0.8843        | 8.1585  | 7000  | 1.8193          | 0.3618    | 0.3219 | 0.3407 | 0.9345   |
| 0.8329        | 8.7413  | 7500  | 1.8722          | 0.3634    | 0.3378 | 0.3501 | 0.9305   |
| 0.784         | 9.3240  | 8000  | 1.7434          | 0.4139    | 0.3140 | 0.3571 | 0.9381   |
| 0.7606        | 9.9068  | 8500  | 1.7787          | 0.4143    | 0.3147 | 0.3577 | 0.9363   |
| 0.7111        | 10.4895 | 9000  | 1.8461          | 0.3518    | 0.3292 | 0.3401 | 0.9315   |
| 0.6894        | 11.0723 | 9500  | 1.7537          | 0.3635    | 0.3327 | 0.3474 | 0.9351   |
| 0.6543        | 11.6550 | 10000 | 1.7565          | 0.3779    | 0.3506 | 0.3637 | 0.9347   |
| 0.6429        | 12.2378 | 10500 | 1.8134          | 0.3769    | 0.3496 | 0.3627 | 0.9323   |
| 0.6084        | 12.8205 | 11000 | 1.8020          | 0.3757    | 0.3740 | 0.3748 | 0.9320   |
| 0.5799        | 13.4033 | 11500 | 1.7080          | 0.4119    | 0.3447 | 0.3753 | 0.9374   |
| 0.5742        | 13.9860 | 12000 | 1.7454          | 0.3963    | 0.3668 | 0.3809 | 0.9356   |
| 0.5467        | 14.5688 | 12500 | 1.8019          | 0.3832    | 0.3748 | 0.3790 | 0.9322   |
| 0.5327        | 15.1515 | 13000 | 1.8784          | 0.3599    | 0.3774 | 0.3685 | 0.9275   |
| 0.5207        | 15.7343 | 13500 | 1.7905          | 0.3977    | 0.3760 | 0.3865 | 0.9336   |
| 0.5047        | 16.3170 | 14000 | 1.6909          | 0.4336    | 0.3606 | 0.3937 | 0.9377   |
| 0.4911        | 16.8998 | 14500 | 1.7464          | 0.3951    | 0.3780 | 0.3864 | 0.9342   |
| 0.4802        | 17.4825 | 15000 | 1.7247          | 0.4230    | 0.3738 | 0.3969 | 0.9365   |
| 0.4729        | 18.0653 | 15500 | 1.6929          | 0.4307    | 0.3639 | 0.3945 | 0.9379   |
| 0.4607        | 18.6480 | 16000 | 1.6395          | 0.4493    | 0.3503 | 0.3937 | 0.9404   |
| 0.449         | 19.2308 | 16500 | 1.7051          | 0.4149    | 0.3766 | 0.3948 | 0.9362   |
| 0.4402        | 19.8135 | 17000 | 1.7664          | 0.4024    | 0.3779 | 0.3898 | 0.9318   |
| 0.4337        | 20.3963 | 17500 | 1.6884          | 0.4475    | 0.3689 | 0.4044 | 0.9386   |
| 0.4272        | 20.9790 | 18000 | 1.6995          | 0.4209    | 0.3841 | 0.4017 | 0.9360   |
| 0.4162        | 21.5618 | 18500 | 1.6522          | 0.4428    | 0.3668 | 0.4012 | 0.9387   |
| 0.4114        | 22.1445 | 19000 | 1.6957          | 0.4082    | 0.3797 | 0.3935 | 0.9356   |
| 0.4087        | 22.7273 | 19500 | 1.6728          | 0.4323    | 0.3656 | 0.3962 | 0.9377   |
| 0.4008        | 23.3100 | 20000 | 1.6749          | 0.4287    | 0.3598 | 0.3913 | 0.9368   |
| 0.394         | 23.8928 | 20500 | 1.6745          | 0.4266    | 0.3640 | 0.3928 | 0.9373   |
| 0.3887        | 24.4755 | 21000 | 1.6553          | 0.4358    | 0.3666 | 0.3982 | 0.9386   |
| 0.3876        | 25.0583 | 21500 | 1.6904          | 0.4190    | 0.3841 | 0.4008 | 0.9363   |
| 0.3819        | 25.6410 | 22000 | 1.6581          | 0.4360    | 0.3761 | 0.4039 | 0.9372   |
| 0.3776        | 26.2238 | 22500 | 1.6192          | 0.4595    | 0.3620 | 0.4050 | 0.9401   |
| 0.3767        | 26.8065 | 23000 | 1.6383          | 0.4453    | 0.3796 | 0.4098 | 0.9386   |
| 0.3738        | 27.3893 | 23500 | 1.6327          | 0.4517    | 0.3745 | 0.4095 | 0.9396   |
| 0.3671        | 27.9720 | 24000 | 1.6605          | 0.4399    | 0.3763 | 0.4056 | 0.9378   |
| 0.3694        | 28.5548 | 24500 | 1.6160          | 0.4554    | 0.3744 | 0.4110 | 0.9402   |
| 0.3659        | 29.1375 | 25000 | 1.6376          | 0.4419    | 0.3734 | 0.4048 | 0.9383   |
| 0.3637        | 29.7203 | 25500 | 1.6332          | 0.4469    | 0.3758 | 0.4083 | 0.9390   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1