metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full_data-univner_full55
results: []
scenario-kd-scr-ner-full_data-univner_full55
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1087
- Precision: 0.6202
- Recall: 0.5509
- F1: 0.5835
- Accuracy: 0.9594
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.7888 | 0.2910 | 500 | 2.4429 | 0.2941 | 0.0087 | 0.0168 | 0.9242 |
2.1116 | 0.5821 | 1000 | 2.1355 | 0.2870 | 0.1215 | 0.1707 | 0.9277 |
1.9109 | 0.8731 | 1500 | 2.0239 | 0.2850 | 0.1580 | 0.2033 | 0.9306 |
1.771 | 1.1641 | 2000 | 1.9268 | 0.4072 | 0.1535 | 0.2230 | 0.9319 |
1.633 | 1.4552 | 2500 | 1.8866 | 0.2862 | 0.2658 | 0.2756 | 0.9336 |
1.5872 | 1.7462 | 3000 | 1.7527 | 0.3273 | 0.2818 | 0.3028 | 0.9372 |
1.4833 | 2.0373 | 3500 | 1.7643 | 0.3558 | 0.2464 | 0.2912 | 0.9377 |
1.3965 | 2.3283 | 4000 | 1.6664 | 0.3675 | 0.3353 | 0.3507 | 0.9394 |
1.3237 | 2.6193 | 4500 | 1.6537 | 0.3445 | 0.3481 | 0.3463 | 0.9376 |
1.2791 | 2.9104 | 5000 | 1.5552 | 0.3960 | 0.3758 | 0.3857 | 0.9431 |
1.2023 | 3.2014 | 5500 | 1.5571 | 0.4338 | 0.3855 | 0.4083 | 0.9442 |
1.1456 | 3.4924 | 6000 | 1.4999 | 0.4258 | 0.3998 | 0.4124 | 0.9457 |
1.1315 | 3.7835 | 6500 | 1.4824 | 0.4244 | 0.3741 | 0.3977 | 0.9458 |
1.0693 | 4.0745 | 7000 | 1.4836 | 0.4407 | 0.3842 | 0.4105 | 0.9461 |
1.0052 | 4.3655 | 7500 | 1.4413 | 0.4322 | 0.4275 | 0.4298 | 0.9472 |
0.9737 | 4.6566 | 8000 | 1.4101 | 0.4634 | 0.4161 | 0.4385 | 0.9491 |
0.9521 | 4.9476 | 8500 | 1.3865 | 0.4476 | 0.4214 | 0.4341 | 0.9491 |
0.8818 | 5.2386 | 9000 | 1.4115 | 0.4612 | 0.4232 | 0.4414 | 0.9494 |
0.8396 | 5.5297 | 9500 | 1.3702 | 0.4645 | 0.4470 | 0.4556 | 0.9501 |
0.8456 | 5.8207 | 10000 | 1.3441 | 0.5076 | 0.4252 | 0.4627 | 0.9508 |
0.829 | 6.1118 | 10500 | 1.3357 | 0.4922 | 0.4718 | 0.4818 | 0.9518 |
0.7611 | 6.4028 | 11000 | 1.3320 | 0.5100 | 0.4548 | 0.4808 | 0.9522 |
0.7475 | 6.6938 | 11500 | 1.3570 | 0.4852 | 0.4953 | 0.4902 | 0.9531 |
0.7362 | 6.9849 | 12000 | 1.3154 | 0.5039 | 0.4929 | 0.4983 | 0.9529 |
0.6776 | 7.2759 | 12500 | 1.3044 | 0.5099 | 0.4884 | 0.4989 | 0.9534 |
0.6701 | 7.5669 | 13000 | 1.2921 | 0.5229 | 0.4675 | 0.4936 | 0.9541 |
0.6586 | 7.8580 | 13500 | 1.2670 | 0.5185 | 0.5067 | 0.5126 | 0.9548 |
0.6284 | 8.1490 | 14000 | 1.2752 | 0.5346 | 0.4979 | 0.5156 | 0.9548 |
0.6025 | 8.4400 | 14500 | 1.2738 | 0.5270 | 0.4884 | 0.5070 | 0.9545 |
0.5955 | 8.7311 | 15000 | 1.2564 | 0.5340 | 0.4895 | 0.5108 | 0.9552 |
0.5784 | 9.0221 | 15500 | 1.2502 | 0.5406 | 0.5035 | 0.5214 | 0.9546 |
0.5479 | 9.3132 | 16000 | 1.2339 | 0.5418 | 0.5203 | 0.5308 | 0.9566 |
0.54 | 9.6042 | 16500 | 1.2380 | 0.5473 | 0.5175 | 0.5320 | 0.9564 |
0.5368 | 9.8952 | 17000 | 1.2403 | 0.5726 | 0.5044 | 0.5363 | 0.9568 |
0.5151 | 10.1863 | 17500 | 1.2152 | 0.5516 | 0.5445 | 0.5480 | 0.9571 |
0.4959 | 10.4773 | 18000 | 1.2323 | 0.5657 | 0.5359 | 0.5504 | 0.9570 |
0.4946 | 10.7683 | 18500 | 1.2150 | 0.5679 | 0.5236 | 0.5449 | 0.9575 |
0.499 | 11.0594 | 19000 | 1.2119 | 0.5637 | 0.5372 | 0.5501 | 0.9576 |
0.462 | 11.3504 | 19500 | 1.2289 | 0.5736 | 0.5294 | 0.5506 | 0.9578 |
0.4631 | 11.6414 | 20000 | 1.2106 | 0.5661 | 0.5435 | 0.5546 | 0.9576 |
0.464 | 11.9325 | 20500 | 1.2292 | 0.5886 | 0.5087 | 0.5458 | 0.9576 |
0.4463 | 12.2235 | 21000 | 1.2135 | 0.5823 | 0.5465 | 0.5639 | 0.9578 |
0.4339 | 12.5146 | 21500 | 1.2098 | 0.5890 | 0.5208 | 0.5528 | 0.9578 |
0.4386 | 12.8056 | 22000 | 1.1906 | 0.5754 | 0.5387 | 0.5565 | 0.9573 |
0.4249 | 13.0966 | 22500 | 1.1972 | 0.5873 | 0.5379 | 0.5615 | 0.9580 |
0.4076 | 13.3877 | 23000 | 1.1994 | 0.5680 | 0.5585 | 0.5632 | 0.9576 |
0.4122 | 13.6787 | 23500 | 1.2129 | 0.5894 | 0.5331 | 0.5598 | 0.9580 |
0.4156 | 13.9697 | 24000 | 1.1865 | 0.5779 | 0.5485 | 0.5628 | 0.9580 |
0.3926 | 14.2608 | 24500 | 1.1828 | 0.5974 | 0.5397 | 0.5671 | 0.9589 |
0.3966 | 14.5518 | 25000 | 1.1764 | 0.5959 | 0.5390 | 0.5660 | 0.9586 |
0.3861 | 14.8428 | 25500 | 1.1769 | 0.5869 | 0.5307 | 0.5574 | 0.9581 |
0.3847 | 15.1339 | 26000 | 1.1997 | 0.5829 | 0.5406 | 0.5610 | 0.9581 |
0.3703 | 15.4249 | 26500 | 1.1809 | 0.5736 | 0.5543 | 0.5638 | 0.9582 |
0.3747 | 15.7159 | 27000 | 1.1896 | 0.5871 | 0.5320 | 0.5582 | 0.9577 |
0.3713 | 16.0070 | 27500 | 1.1700 | 0.5965 | 0.5422 | 0.5681 | 0.9589 |
0.3558 | 16.2980 | 28000 | 1.1922 | 0.5970 | 0.5416 | 0.5680 | 0.9586 |
0.3582 | 16.5891 | 28500 | 1.1507 | 0.5831 | 0.5470 | 0.5644 | 0.9586 |
0.3571 | 16.8801 | 29000 | 1.1405 | 0.5899 | 0.5418 | 0.5648 | 0.9584 |
0.3522 | 17.1711 | 29500 | 1.1610 | 0.6046 | 0.5517 | 0.5769 | 0.9588 |
0.3414 | 17.4622 | 30000 | 1.1670 | 0.6042 | 0.5485 | 0.5750 | 0.9590 |
0.3488 | 17.7532 | 30500 | 1.1502 | 0.5904 | 0.5624 | 0.5761 | 0.9586 |
0.34 | 18.0442 | 31000 | 1.1595 | 0.6091 | 0.5304 | 0.5670 | 0.9585 |
0.3336 | 18.3353 | 31500 | 1.1553 | 0.6025 | 0.5439 | 0.5717 | 0.9589 |
0.3295 | 18.6263 | 32000 | 1.1683 | 0.5916 | 0.5337 | 0.5611 | 0.9580 |
0.3345 | 18.9173 | 32500 | 1.1478 | 0.5825 | 0.5536 | 0.5677 | 0.9585 |
0.3263 | 19.2084 | 33000 | 1.1415 | 0.6093 | 0.5369 | 0.5708 | 0.9589 |
0.3206 | 19.4994 | 33500 | 1.1410 | 0.5888 | 0.5637 | 0.5760 | 0.9593 |
0.3234 | 19.7905 | 34000 | 1.1371 | 0.6072 | 0.5490 | 0.5766 | 0.9591 |
0.3212 | 20.0815 | 34500 | 1.1401 | 0.6006 | 0.5478 | 0.5730 | 0.9587 |
0.3154 | 20.3725 | 35000 | 1.1505 | 0.6165 | 0.5400 | 0.5758 | 0.9591 |
0.3081 | 20.6636 | 35500 | 1.1512 | 0.5977 | 0.5393 | 0.5670 | 0.9591 |
0.3137 | 20.9546 | 36000 | 1.1477 | 0.6185 | 0.5357 | 0.5741 | 0.9590 |
0.3048 | 21.2456 | 36500 | 1.1344 | 0.6070 | 0.5416 | 0.5724 | 0.9593 |
0.3028 | 21.5367 | 37000 | 1.1308 | 0.6192 | 0.5481 | 0.5815 | 0.9594 |
0.3039 | 21.8277 | 37500 | 1.1492 | 0.6167 | 0.5318 | 0.5711 | 0.9591 |
0.3013 | 22.1187 | 38000 | 1.1340 | 0.6139 | 0.5393 | 0.5742 | 0.9592 |
0.2966 | 22.4098 | 38500 | 1.1176 | 0.6073 | 0.5561 | 0.5806 | 0.9594 |
0.2956 | 22.7008 | 39000 | 1.1156 | 0.6100 | 0.5627 | 0.5854 | 0.9593 |
0.2982 | 22.9919 | 39500 | 1.1282 | 0.6162 | 0.5553 | 0.5842 | 0.9596 |
0.2915 | 23.2829 | 40000 | 1.1359 | 0.6048 | 0.5510 | 0.5766 | 0.9593 |
0.2882 | 23.5739 | 40500 | 1.1194 | 0.6075 | 0.5517 | 0.5783 | 0.9592 |
0.2906 | 23.8650 | 41000 | 1.1256 | 0.6058 | 0.5442 | 0.5734 | 0.9590 |
0.2852 | 24.1560 | 41500 | 1.1115 | 0.6143 | 0.5465 | 0.5785 | 0.9596 |
0.2864 | 24.4470 | 42000 | 1.1214 | 0.6103 | 0.5441 | 0.5753 | 0.9594 |
0.2829 | 24.7381 | 42500 | 1.1333 | 0.6267 | 0.5346 | 0.5770 | 0.9592 |
0.2836 | 25.0291 | 43000 | 1.1195 | 0.6067 | 0.5550 | 0.5797 | 0.9591 |
0.2795 | 25.3201 | 43500 | 1.1260 | 0.6332 | 0.5315 | 0.5779 | 0.9593 |
0.2779 | 25.6112 | 44000 | 1.1119 | 0.6164 | 0.5457 | 0.5789 | 0.9597 |
0.2787 | 25.9022 | 44500 | 1.1094 | 0.6103 | 0.5640 | 0.5862 | 0.9600 |
0.2765 | 26.1932 | 45000 | 1.1104 | 0.6166 | 0.5474 | 0.5799 | 0.9596 |
0.2743 | 26.4843 | 45500 | 1.1164 | 0.6172 | 0.5553 | 0.5846 | 0.9596 |
0.2731 | 26.7753 | 46000 | 1.1246 | 0.6158 | 0.5578 | 0.5854 | 0.9594 |
0.2705 | 27.0664 | 46500 | 1.1110 | 0.6153 | 0.5468 | 0.5790 | 0.9593 |
0.2707 | 27.3574 | 47000 | 1.1101 | 0.6207 | 0.5586 | 0.5880 | 0.9602 |
0.2713 | 27.6484 | 47500 | 1.1131 | 0.6203 | 0.5455 | 0.5805 | 0.9596 |
0.2704 | 27.9395 | 48000 | 1.1122 | 0.6193 | 0.5494 | 0.5823 | 0.9596 |
0.2669 | 28.2305 | 48500 | 1.1127 | 0.6139 | 0.5519 | 0.5812 | 0.9596 |
0.2696 | 28.5215 | 49000 | 1.1148 | 0.6233 | 0.5449 | 0.5815 | 0.9597 |
0.2658 | 28.8126 | 49500 | 1.1130 | 0.6182 | 0.5451 | 0.5794 | 0.9597 |
0.2663 | 29.1036 | 50000 | 1.1070 | 0.6170 | 0.5475 | 0.5802 | 0.9593 |
0.2625 | 29.3946 | 50500 | 1.1055 | 0.6172 | 0.5498 | 0.5816 | 0.9599 |
0.2652 | 29.6857 | 51000 | 1.1010 | 0.6332 | 0.5516 | 0.5896 | 0.9603 |
0.2662 | 29.9767 | 51500 | 1.1087 | 0.6202 | 0.5509 | 0.5835 | 0.9594 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1