Edit model card

scenario-kd-scr-ner-half-xlmr_data-univner_full44

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 120.6807
  • Precision: 0.4293
  • Recall: 0.4089
  • F1: 0.4189
  • Accuracy: 0.9498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 44
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
257.123 0.2911 500 190.7746 0.0 0.0 0.0 0.9241
179.8008 0.5822 1000 172.0475 0.4174 0.0215 0.0409 0.9250
166.9722 0.8732 1500 168.3299 0.1982 0.0700 0.1034 0.9262
160.8387 1.1643 2000 159.9843 0.3943 0.0140 0.0270 0.9247
156.1421 1.4554 2500 155.4852 0.2372 0.0975 0.1382 0.9274
151.8715 1.7465 3000 150.9896 0.2908 0.0581 0.0969 0.9266
147.6463 2.0375 3500 147.4566 0.2915 0.0597 0.0991 0.9266
143.651 2.3286 4000 144.4443 0.2725 0.0756 0.1184 0.9278
141.8507 2.6197 4500 141.7467 0.2457 0.1495 0.1859 0.9296
138.4918 2.9108 5000 139.3207 0.2607 0.1085 0.1532 0.9298
135.9046 3.2019 5500 137.1947 0.2604 0.1374 0.1798 0.9316
133.8725 3.4929 6000 135.3692 0.2597 0.1658 0.2024 0.9329
131.6288 3.7840 6500 134.0009 0.2604 0.1837 0.2154 0.9352
130.0139 4.0751 7000 132.1269 0.2941 0.2082 0.2438 0.9370
128.3934 4.3662 7500 131.1457 0.3030 0.2125 0.2498 0.9366
127.0388 4.6573 8000 129.8376 0.3060 0.2624 0.2826 0.9389
125.8219 4.9483 8500 128.8504 0.3098 0.2495 0.2764 0.9388
124.1103 5.2394 9000 127.8314 0.3401 0.2832 0.3091 0.9410
122.8369 5.5305 9500 127.0276 0.3409 0.3168 0.3284 0.9415
122.6045 5.8216 10000 126.1700 0.3644 0.2913 0.3238 0.9431
121.3109 6.1126 10500 125.1837 0.3703 0.3202 0.3434 0.9442
120.3202 6.4037 11000 124.8068 0.3985 0.3040 0.3449 0.9443
119.4787 6.6948 11500 124.0347 0.3937 0.3298 0.3589 0.9454
118.5185 6.9859 12000 123.6216 0.4032 0.3298 0.3629 0.9459
117.9392 7.2770 12500 123.3605 0.4185 0.3352 0.3722 0.9466
117.1901 7.5680 13000 122.6046 0.4163 0.3518 0.3813 0.9477
116.9696 7.8591 13500 122.1267 0.4206 0.3735 0.3957 0.9481
116.1554 8.1502 14000 121.7281 0.4289 0.3649 0.3943 0.9486
115.7022 8.4413 14500 121.4247 0.4332 0.3963 0.4140 0.9491
115.7436 8.7324 15000 121.2025 0.4291 0.4087 0.4187 0.9496
115.2168 9.0234 15500 121.0645 0.4274 0.3981 0.4122 0.9495
114.7331 9.3145 16000 120.8095 0.4204 0.3956 0.4076 0.9494
114.5054 9.6056 16500 120.7807 0.4369 0.3929 0.4137 0.9500
114.9341 9.8967 17000 120.6807 0.4293 0.4089 0.4189 0.9498

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
107M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-kd-scr-ner-half-xlmr_data-univner_full44