scenario-kd-scr-ner-half-xlmr_data-univner_full44
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_full on the None dataset. It achieves the following results on the evaluation set:
- Loss: 120.6807
- Precision: 0.4293
- Recall: 0.4089
- F1: 0.4189
- Accuracy: 0.9498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 44
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
257.123 | 0.2911 | 500 | 190.7746 | 0.0 | 0.0 | 0.0 | 0.9241 |
179.8008 | 0.5822 | 1000 | 172.0475 | 0.4174 | 0.0215 | 0.0409 | 0.9250 |
166.9722 | 0.8732 | 1500 | 168.3299 | 0.1982 | 0.0700 | 0.1034 | 0.9262 |
160.8387 | 1.1643 | 2000 | 159.9843 | 0.3943 | 0.0140 | 0.0270 | 0.9247 |
156.1421 | 1.4554 | 2500 | 155.4852 | 0.2372 | 0.0975 | 0.1382 | 0.9274 |
151.8715 | 1.7465 | 3000 | 150.9896 | 0.2908 | 0.0581 | 0.0969 | 0.9266 |
147.6463 | 2.0375 | 3500 | 147.4566 | 0.2915 | 0.0597 | 0.0991 | 0.9266 |
143.651 | 2.3286 | 4000 | 144.4443 | 0.2725 | 0.0756 | 0.1184 | 0.9278 |
141.8507 | 2.6197 | 4500 | 141.7467 | 0.2457 | 0.1495 | 0.1859 | 0.9296 |
138.4918 | 2.9108 | 5000 | 139.3207 | 0.2607 | 0.1085 | 0.1532 | 0.9298 |
135.9046 | 3.2019 | 5500 | 137.1947 | 0.2604 | 0.1374 | 0.1798 | 0.9316 |
133.8725 | 3.4929 | 6000 | 135.3692 | 0.2597 | 0.1658 | 0.2024 | 0.9329 |
131.6288 | 3.7840 | 6500 | 134.0009 | 0.2604 | 0.1837 | 0.2154 | 0.9352 |
130.0139 | 4.0751 | 7000 | 132.1269 | 0.2941 | 0.2082 | 0.2438 | 0.9370 |
128.3934 | 4.3662 | 7500 | 131.1457 | 0.3030 | 0.2125 | 0.2498 | 0.9366 |
127.0388 | 4.6573 | 8000 | 129.8376 | 0.3060 | 0.2624 | 0.2826 | 0.9389 |
125.8219 | 4.9483 | 8500 | 128.8504 | 0.3098 | 0.2495 | 0.2764 | 0.9388 |
124.1103 | 5.2394 | 9000 | 127.8314 | 0.3401 | 0.2832 | 0.3091 | 0.9410 |
122.8369 | 5.5305 | 9500 | 127.0276 | 0.3409 | 0.3168 | 0.3284 | 0.9415 |
122.6045 | 5.8216 | 10000 | 126.1700 | 0.3644 | 0.2913 | 0.3238 | 0.9431 |
121.3109 | 6.1126 | 10500 | 125.1837 | 0.3703 | 0.3202 | 0.3434 | 0.9442 |
120.3202 | 6.4037 | 11000 | 124.8068 | 0.3985 | 0.3040 | 0.3449 | 0.9443 |
119.4787 | 6.6948 | 11500 | 124.0347 | 0.3937 | 0.3298 | 0.3589 | 0.9454 |
118.5185 | 6.9859 | 12000 | 123.6216 | 0.4032 | 0.3298 | 0.3629 | 0.9459 |
117.9392 | 7.2770 | 12500 | 123.3605 | 0.4185 | 0.3352 | 0.3722 | 0.9466 |
117.1901 | 7.5680 | 13000 | 122.6046 | 0.4163 | 0.3518 | 0.3813 | 0.9477 |
116.9696 | 7.8591 | 13500 | 122.1267 | 0.4206 | 0.3735 | 0.3957 | 0.9481 |
116.1554 | 8.1502 | 14000 | 121.7281 | 0.4289 | 0.3649 | 0.3943 | 0.9486 |
115.7022 | 8.4413 | 14500 | 121.4247 | 0.4332 | 0.3963 | 0.4140 | 0.9491 |
115.7436 | 8.7324 | 15000 | 121.2025 | 0.4291 | 0.4087 | 0.4187 | 0.9496 |
115.2168 | 9.0234 | 15500 | 121.0645 | 0.4274 | 0.3981 | 0.4122 | 0.9495 |
114.7331 | 9.3145 | 16000 | 120.8095 | 0.4204 | 0.3956 | 0.4076 | 0.9494 |
114.5054 | 9.6056 | 16500 | 120.7807 | 0.4369 | 0.3929 | 0.4137 | 0.9500 |
114.9341 | 9.8967 | 17000 | 120.6807 | 0.4293 | 0.4089 | 0.4189 | 0.9498 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for haryoaw/scenario-kd-scr-ner-half-xlmr_data-univner_full44
Base model
FacebookAI/xlm-roberta-base