File size: 6,447 Bytes
e7354ad
9ee42a1
e7354ad
 
 
 
 
 
 
9ee42a1
 
e7354ad
 
 
 
 
 
 
 
 
 
 
 
a078f71
 
 
 
 
e7354ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a078f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7354ad
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-po-ner-full-xlmr_data-univner_half66
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-po-ner-full-xlmr_data-univner_half66

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1641
- Precision: 0.8048
- Recall: 0.8120
- F1: 0.8084
- Accuracy: 0.9797

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0757        | 0.5828  | 500   | 0.0751          | 0.7550    | 0.7817 | 0.7681 | 0.9772   |
| 0.0434        | 1.1655  | 1000  | 0.0856          | 0.7626    | 0.7987 | 0.7803 | 0.9783   |
| 0.0293        | 1.7483  | 1500  | 0.0781          | 0.7835    | 0.8022 | 0.7928 | 0.9792   |
| 0.0208        | 2.3310  | 2000  | 0.0929          | 0.7929    | 0.7868 | 0.7898 | 0.9784   |
| 0.0171        | 2.9138  | 2500  | 0.0903          | 0.7893    | 0.8176 | 0.8032 | 0.9796   |
| 0.0125        | 3.4965  | 3000  | 0.1048          | 0.7915    | 0.7876 | 0.7896 | 0.9779   |
| 0.0121        | 4.0793  | 3500  | 0.1080          | 0.7890    | 0.8033 | 0.7961 | 0.9788   |
| 0.0096        | 4.6620  | 4000  | 0.1116          | 0.7827    | 0.8083 | 0.7953 | 0.9789   |
| 0.0083        | 5.2448  | 4500  | 0.1136          | 0.7957    | 0.8002 | 0.7979 | 0.9786   |
| 0.0074        | 5.8275  | 5000  | 0.1162          | 0.7785    | 0.8139 | 0.7958 | 0.9787   |
| 0.0066        | 6.4103  | 5500  | 0.1192          | 0.7851    | 0.8058 | 0.7953 | 0.9786   |
| 0.0065        | 6.9930  | 6000  | 0.1200          | 0.8077    | 0.7791 | 0.7931 | 0.9787   |
| 0.0049        | 7.5758  | 6500  | 0.1227          | 0.8039    | 0.7974 | 0.8007 | 0.9795   |
| 0.0051        | 8.1585  | 7000  | 0.1259          | 0.7906    | 0.8058 | 0.7981 | 0.9789   |
| 0.0041        | 8.7413  | 7500  | 0.1258          | 0.7992    | 0.7905 | 0.7948 | 0.9792   |
| 0.004         | 9.3240  | 8000  | 0.1336          | 0.7865    | 0.8072 | 0.7967 | 0.9786   |
| 0.0039        | 9.9068  | 8500  | 0.1261          | 0.8145    | 0.7902 | 0.8022 | 0.9792   |
| 0.0032        | 10.4895 | 9000  | 0.1309          | 0.7940    | 0.7999 | 0.7970 | 0.9791   |
| 0.0033        | 11.0723 | 9500  | 0.1320          | 0.8054    | 0.7869 | 0.7960 | 0.9793   |
| 0.0026        | 11.6550 | 10000 | 0.1408          | 0.7915    | 0.8071 | 0.7992 | 0.9789   |
| 0.0026        | 12.2378 | 10500 | 0.1404          | 0.7942    | 0.8005 | 0.7973 | 0.9788   |
| 0.0022        | 12.8205 | 11000 | 0.1363          | 0.7897    | 0.8134 | 0.8014 | 0.9797   |
| 0.0024        | 13.4033 | 11500 | 0.1442          | 0.8065    | 0.7970 | 0.8017 | 0.9793   |
| 0.0021        | 13.9860 | 12000 | 0.1401          | 0.8092    | 0.7840 | 0.7964 | 0.9789   |
| 0.0022        | 14.5688 | 12500 | 0.1382          | 0.8100    | 0.7983 | 0.8041 | 0.9792   |
| 0.0015        | 15.1515 | 13000 | 0.1506          | 0.8066    | 0.7995 | 0.8030 | 0.9793   |
| 0.0018        | 15.7343 | 13500 | 0.1437          | 0.8047    | 0.7989 | 0.8018 | 0.9794   |
| 0.002         | 16.3170 | 14000 | 0.1448          | 0.7997    | 0.8046 | 0.8022 | 0.9794   |
| 0.0016        | 16.8998 | 14500 | 0.1466          | 0.8111    | 0.7934 | 0.8021 | 0.9792   |
| 0.0013        | 17.4825 | 15000 | 0.1506          | 0.8046    | 0.7943 | 0.7994 | 0.9791   |
| 0.0012        | 18.0653 | 15500 | 0.1508          | 0.8038    | 0.8067 | 0.8052 | 0.9796   |
| 0.0011        | 18.6480 | 16000 | 0.1493          | 0.8026    | 0.8013 | 0.8020 | 0.9796   |
| 0.0011        | 19.2308 | 16500 | 0.1570          | 0.7905    | 0.8048 | 0.7976 | 0.9787   |
| 0.0011        | 19.8135 | 17000 | 0.1510          | 0.7980    | 0.8075 | 0.8027 | 0.9793   |
| 0.001         | 20.3963 | 17500 | 0.1534          | 0.7928    | 0.8173 | 0.8049 | 0.9797   |
| 0.0009        | 20.9790 | 18000 | 0.1485          | 0.7916    | 0.8181 | 0.8046 | 0.9798   |
| 0.0008        | 21.5618 | 18500 | 0.1509          | 0.8074    | 0.8045 | 0.8060 | 0.9798   |
| 0.0009        | 22.1445 | 19000 | 0.1515          | 0.8070    | 0.8084 | 0.8077 | 0.9801   |
| 0.0006        | 22.7273 | 19500 | 0.1566          | 0.8022    | 0.8106 | 0.8064 | 0.9798   |
| 0.0007        | 23.3100 | 20000 | 0.1620          | 0.8076    | 0.7976 | 0.8026 | 0.9794   |
| 0.0008        | 23.8928 | 20500 | 0.1570          | 0.8028    | 0.8084 | 0.8056 | 0.9798   |
| 0.0005        | 24.4755 | 21000 | 0.1563          | 0.8020    | 0.8110 | 0.8065 | 0.9798   |
| 0.0004        | 25.0583 | 21500 | 0.1610          | 0.8059    | 0.8013 | 0.8036 | 0.9794   |
| 0.0004        | 25.6410 | 22000 | 0.1645          | 0.8133    | 0.7943 | 0.8036 | 0.9793   |
| 0.0004        | 26.2238 | 22500 | 0.1615          | 0.8031    | 0.8100 | 0.8066 | 0.9798   |
| 0.0004        | 26.8065 | 23000 | 0.1630          | 0.8010    | 0.8156 | 0.8083 | 0.9796   |
| 0.0003        | 27.3893 | 23500 | 0.1626          | 0.8062    | 0.8114 | 0.8088 | 0.9800   |
| 0.0003        | 27.9720 | 24000 | 0.1626          | 0.8054    | 0.8147 | 0.8101 | 0.9800   |
| 0.0002        | 28.5548 | 24500 | 0.1639          | 0.8079    | 0.8107 | 0.8093 | 0.9798   |
| 0.0003        | 29.1375 | 25000 | 0.1637          | 0.8064    | 0.8085 | 0.8075 | 0.9797   |
| 0.0002        | 29.7203 | 25500 | 0.1641          | 0.8048    | 0.8120 | 0.8084 | 0.9797   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1