metadata
library_name: transformers
license: mit
base_model: haryoaw/scenario-TCR-NER_data-univner_half
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: scenario-non-kd-po-ner-full-xlmr_data-univner_half66
results: []
scenario-non-kd-po-ner-full-xlmr_data-univner_half66
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1331
- Precision: 0.8406
- Recall: 0.8491
- F1: 0.8448
- Accuracy: 0.9836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0102 | 0.5828 | 500 | 0.0979 | 0.8297 | 0.8550 | 0.8422 | 0.9832 |
0.0109 | 1.1655 | 1000 | 0.0889 | 0.8346 | 0.8466 | 0.8406 | 0.9835 |
0.0084 | 1.7483 | 1500 | 0.0932 | 0.8491 | 0.8462 | 0.8477 | 0.9839 |
0.0075 | 2.3310 | 2000 | 0.0919 | 0.8434 | 0.8437 | 0.8436 | 0.9835 |
0.0072 | 2.9138 | 2500 | 0.1043 | 0.8278 | 0.8380 | 0.8329 | 0.9826 |
0.0058 | 3.4965 | 3000 | 0.1020 | 0.8370 | 0.8468 | 0.8419 | 0.9832 |
0.0059 | 4.0793 | 3500 | 0.1030 | 0.8467 | 0.8458 | 0.8463 | 0.9839 |
0.005 | 4.6620 | 4000 | 0.1182 | 0.8492 | 0.8326 | 0.8408 | 0.9830 |
0.005 | 5.2448 | 4500 | 0.1141 | 0.8235 | 0.8510 | 0.8370 | 0.9821 |
0.0044 | 5.8275 | 5000 | 0.1184 | 0.8273 | 0.8572 | 0.8420 | 0.9828 |
0.0045 | 6.4103 | 5500 | 0.1213 | 0.8417 | 0.8494 | 0.8455 | 0.9833 |
0.0048 | 6.9930 | 6000 | 0.1126 | 0.8413 | 0.8413 | 0.8413 | 0.9835 |
0.0043 | 7.5758 | 6500 | 0.1240 | 0.8363 | 0.8472 | 0.8417 | 0.9830 |
0.0036 | 8.1585 | 7000 | 0.1185 | 0.8470 | 0.8450 | 0.8460 | 0.9838 |
0.0032 | 8.7413 | 7500 | 0.1249 | 0.8338 | 0.8391 | 0.8365 | 0.9828 |
0.0022 | 9.3240 | 8000 | 0.1260 | 0.8351 | 0.8499 | 0.8425 | 0.9835 |
0.003 | 9.9068 | 8500 | 0.1208 | 0.8273 | 0.8420 | 0.8346 | 0.9827 |
0.0024 | 10.4895 | 9000 | 0.1216 | 0.8451 | 0.8463 | 0.8457 | 0.9836 |
0.0027 | 11.0723 | 9500 | 0.1214 | 0.8410 | 0.8390 | 0.8400 | 0.9832 |
0.0019 | 11.6550 | 10000 | 0.1234 | 0.8419 | 0.8458 | 0.8438 | 0.9833 |
0.0023 | 12.2378 | 10500 | 0.1289 | 0.8339 | 0.8502 | 0.8420 | 0.9830 |
0.0019 | 12.8205 | 11000 | 0.1286 | 0.8400 | 0.8401 | 0.8401 | 0.9832 |
0.002 | 13.4033 | 11500 | 0.1331 | 0.8406 | 0.8491 | 0.8448 | 0.9836 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1