metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_en
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_en44
results: []
scenario-non-kd-pre-ner-full-mdeberta_data-univner_en44
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1490
- Precision: 0.8349
- Recall: 0.8271
- F1: 0.8310
- Accuracy: 0.9846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0023 | 1.2755 | 500 | 0.1120 | 0.8158 | 0.8344 | 0.8250 | 0.9851 |
0.0019 | 2.5510 | 1000 | 0.1055 | 0.7790 | 0.8468 | 0.8115 | 0.9840 |
0.0019 | 3.8265 | 1500 | 0.1115 | 0.8134 | 0.8395 | 0.8263 | 0.9847 |
0.0013 | 5.1020 | 2000 | 0.1248 | 0.7938 | 0.8251 | 0.8091 | 0.9835 |
0.0016 | 6.3776 | 2500 | 0.1281 | 0.8302 | 0.8147 | 0.8224 | 0.9845 |
0.0012 | 7.6531 | 3000 | 0.1241 | 0.8179 | 0.8137 | 0.8158 | 0.9841 |
0.001 | 8.9286 | 3500 | 0.1191 | 0.8184 | 0.8302 | 0.8243 | 0.9842 |
0.0005 | 10.2041 | 4000 | 0.1335 | 0.7951 | 0.8395 | 0.8167 | 0.9837 |
0.001 | 11.4796 | 4500 | 0.1376 | 0.8125 | 0.8344 | 0.8233 | 0.9843 |
0.0005 | 12.7551 | 5000 | 0.1282 | 0.8244 | 0.8313 | 0.8278 | 0.9847 |
0.0007 | 14.0306 | 5500 | 0.1247 | 0.8294 | 0.8354 | 0.8324 | 0.9848 |
0.0003 | 15.3061 | 6000 | 0.1440 | 0.8143 | 0.8354 | 0.8247 | 0.9841 |
0.0009 | 16.5816 | 6500 | 0.1456 | 0.8384 | 0.8219 | 0.8301 | 0.9840 |
0.0003 | 17.8571 | 7000 | 0.1401 | 0.8154 | 0.8416 | 0.8283 | 0.9849 |
0.0002 | 19.1327 | 7500 | 0.1478 | 0.8306 | 0.8323 | 0.8314 | 0.9850 |
0.0003 | 20.4082 | 8000 | 0.1448 | 0.8306 | 0.8271 | 0.8288 | 0.9850 |
0.0003 | 21.6837 | 8500 | 0.1416 | 0.8240 | 0.8385 | 0.8312 | 0.9847 |
0.0002 | 22.9592 | 9000 | 0.1501 | 0.8159 | 0.8395 | 0.8276 | 0.9843 |
0.0001 | 24.2347 | 9500 | 0.1457 | 0.8243 | 0.8354 | 0.8298 | 0.9845 |
0.0001 | 25.5102 | 10000 | 0.1474 | 0.8258 | 0.8344 | 0.8301 | 0.9846 |
0.0001 | 26.7857 | 10500 | 0.1493 | 0.8244 | 0.8406 | 0.8324 | 0.9847 |
0.0001 | 28.0612 | 11000 | 0.1497 | 0.8418 | 0.8209 | 0.8312 | 0.9847 |
0.0001 | 29.3367 | 11500 | 0.1490 | 0.8349 | 0.8271 | 0.8310 | 0.9846 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1