haryoaw's picture
Upload tokenizer
ca0a4fd verified
|
raw
history blame
4.45 kB
metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: scenario-non-kd-pre-ner-full-xlmr_data-univner_half55
    results: []

scenario-non-kd-pre-ner-full-xlmr_data-univner_half55

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1450
  • Precision: 0.8516
  • Recall: 0.8357
  • F1: 0.8436
  • Accuracy: 0.9832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0106 0.5828 500 0.0804 0.8385 0.8489 0.8437 0.9838
0.0101 1.1655 1000 0.0863 0.8549 0.8432 0.8490 0.9838
0.009 1.7483 1500 0.0960 0.8282 0.8557 0.8418 0.9829
0.0077 2.3310 2000 0.1040 0.8320 0.8498 0.8408 0.9827
0.0077 2.9138 2500 0.0931 0.8461 0.8478 0.8469 0.9835
0.0054 3.4965 3000 0.0982 0.8482 0.8523 0.8502 0.9843
0.0061 4.0793 3500 0.1075 0.8450 0.8355 0.8402 0.9832
0.0053 4.6620 4000 0.1068 0.8409 0.8536 0.8472 0.9839
0.0047 5.2448 4500 0.1073 0.8372 0.8592 0.8480 0.9837
0.0047 5.8275 5000 0.1100 0.8451 0.8585 0.8517 0.9839
0.0034 6.4103 5500 0.1167 0.8350 0.8497 0.8422 0.9832
0.0034 6.9930 6000 0.1122 0.8405 0.8478 0.8441 0.9836
0.0035 7.5758 6500 0.1125 0.8424 0.8419 0.8421 0.9834
0.0032 8.1585 7000 0.1145 0.8454 0.8504 0.8479 0.9836
0.0035 8.7413 7500 0.1075 0.8499 0.8407 0.8453 0.9838
0.0027 9.3240 8000 0.1213 0.8493 0.8384 0.8438 0.9837
0.0031 9.9068 8500 0.1083 0.8551 0.8440 0.8495 0.9842
0.0027 10.4895 9000 0.1273 0.8329 0.8639 0.8482 0.9835
0.0024 11.0723 9500 0.1247 0.8478 0.8411 0.8444 0.9834
0.0021 11.6550 10000 0.1161 0.8487 0.8378 0.8432 0.9838
0.0019 12.2378 10500 0.1284 0.8316 0.8556 0.8434 0.9830
0.0021 12.8205 11000 0.1208 0.8492 0.8510 0.8501 0.9840
0.0015 13.4033 11500 0.1266 0.8374 0.8499 0.8436 0.9830
0.002 13.9860 12000 0.1236 0.8403 0.8530 0.8466 0.9832
0.0016 14.5688 12500 0.1313 0.8453 0.8409 0.8430 0.9833
0.0013 15.1515 13000 0.1362 0.8460 0.8482 0.8471 0.9835
0.0015 15.7343 13500 0.1246 0.8480 0.8511 0.8496 0.9840
0.0012 16.3170 14000 0.1335 0.8549 0.8423 0.8485 0.9837
0.0014 16.8998 14500 0.1265 0.8445 0.8433 0.8439 0.9833
0.0009 17.4825 15000 0.1450 0.8516 0.8357 0.8436 0.9832

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1