haryoaw's picture
Upload tokenizer
1dbddd7 verified
metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full55
    results: []

scenario-non-kd-scr-ner-half-mdeberta_data-univner_full55

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2603
  • Precision: 0.6078
  • Recall: 0.5840
  • F1: 0.5957
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3519 0.2910 500 0.2816 0.3080 0.1195 0.1722 0.9290
0.2346 0.5821 1000 0.2141 0.3649 0.2431 0.2918 0.9381
0.1749 0.8731 1500 0.1763 0.4217 0.3763 0.3977 0.9469
0.1347 1.1641 2000 0.1684 0.4579 0.4136 0.4347 0.9507
0.1095 1.4552 2500 0.1560 0.4890 0.5004 0.4946 0.9535
0.1004 1.7462 3000 0.1529 0.5150 0.5223 0.5186 0.9557
0.0893 2.0373 3500 0.1536 0.5390 0.5421 0.5405 0.9573
0.0687 2.3283 4000 0.1621 0.5659 0.5190 0.5414 0.9578
0.0651 2.6193 4500 0.1575 0.5644 0.5419 0.5529 0.9585
0.0633 2.9104 5000 0.1500 0.5622 0.5718 0.5670 0.9598
0.0495 3.2014 5500 0.1585 0.5754 0.5763 0.5758 0.9600
0.0441 3.4924 6000 0.1694 0.5877 0.5646 0.5759 0.9600
0.0439 3.7835 6500 0.1642 0.5763 0.5881 0.5821 0.9602
0.04 4.0745 7000 0.1719 0.5795 0.5920 0.5857 0.9604
0.0298 4.3655 7500 0.1847 0.5904 0.5561 0.5727 0.9604
0.0328 4.6566 8000 0.1730 0.6106 0.5944 0.6024 0.9614
0.0312 4.9476 8500 0.1730 0.5697 0.6041 0.5864 0.9595
0.0223 5.2386 9000 0.1855 0.5739 0.6086 0.5907 0.9603
0.0211 5.5297 9500 0.1962 0.6010 0.5703 0.5853 0.9607
0.0225 5.8207 10000 0.1951 0.6058 0.5778 0.5915 0.9609
0.0208 6.1118 10500 0.2037 0.5960 0.5905 0.5932 0.9604
0.0159 6.4028 11000 0.2101 0.5885 0.5812 0.5848 0.9600
0.0167 6.6938 11500 0.2092 0.5946 0.5852 0.5899 0.9605
0.0167 6.9849 12000 0.2103 0.5901 0.5826 0.5863 0.9602
0.0113 7.2759 12500 0.2245 0.5868 0.5888 0.5878 0.9601
0.0114 7.5669 13000 0.2301 0.6030 0.5799 0.5912 0.9610
0.0122 7.8580 13500 0.2336 0.6091 0.5641 0.5858 0.9605
0.0115 8.1490 14000 0.2328 0.5922 0.5868 0.5895 0.9604
0.0087 8.4400 14500 0.2393 0.6049 0.5719 0.5880 0.9607
0.0094 8.7311 15000 0.2455 0.5976 0.5812 0.5893 0.9607
0.0084 9.0221 15500 0.2436 0.5966 0.5817 0.5891 0.9605
0.0066 9.3132 16000 0.2515 0.5982 0.5724 0.5850 0.9604
0.0075 9.6042 16500 0.2522 0.6046 0.5761 0.5900 0.9607
0.0076 9.8952 17000 0.2580 0.6131 0.5687 0.5901 0.9609
0.0055 10.1863 17500 0.2519 0.6093 0.5926 0.6008 0.9612
0.0053 10.4773 18000 0.2603 0.6078 0.5840 0.5957 0.9607

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1