metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full55
results: []
scenario-non-kd-scr-ner-half-mdeberta_data-univner_full55
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2603
- Precision: 0.6078
- Recall: 0.5840
- F1: 0.5957
- Accuracy: 0.9607
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3519 | 0.2910 | 500 | 0.2816 | 0.3080 | 0.1195 | 0.1722 | 0.9290 |
0.2346 | 0.5821 | 1000 | 0.2141 | 0.3649 | 0.2431 | 0.2918 | 0.9381 |
0.1749 | 0.8731 | 1500 | 0.1763 | 0.4217 | 0.3763 | 0.3977 | 0.9469 |
0.1347 | 1.1641 | 2000 | 0.1684 | 0.4579 | 0.4136 | 0.4347 | 0.9507 |
0.1095 | 1.4552 | 2500 | 0.1560 | 0.4890 | 0.5004 | 0.4946 | 0.9535 |
0.1004 | 1.7462 | 3000 | 0.1529 | 0.5150 | 0.5223 | 0.5186 | 0.9557 |
0.0893 | 2.0373 | 3500 | 0.1536 | 0.5390 | 0.5421 | 0.5405 | 0.9573 |
0.0687 | 2.3283 | 4000 | 0.1621 | 0.5659 | 0.5190 | 0.5414 | 0.9578 |
0.0651 | 2.6193 | 4500 | 0.1575 | 0.5644 | 0.5419 | 0.5529 | 0.9585 |
0.0633 | 2.9104 | 5000 | 0.1500 | 0.5622 | 0.5718 | 0.5670 | 0.9598 |
0.0495 | 3.2014 | 5500 | 0.1585 | 0.5754 | 0.5763 | 0.5758 | 0.9600 |
0.0441 | 3.4924 | 6000 | 0.1694 | 0.5877 | 0.5646 | 0.5759 | 0.9600 |
0.0439 | 3.7835 | 6500 | 0.1642 | 0.5763 | 0.5881 | 0.5821 | 0.9602 |
0.04 | 4.0745 | 7000 | 0.1719 | 0.5795 | 0.5920 | 0.5857 | 0.9604 |
0.0298 | 4.3655 | 7500 | 0.1847 | 0.5904 | 0.5561 | 0.5727 | 0.9604 |
0.0328 | 4.6566 | 8000 | 0.1730 | 0.6106 | 0.5944 | 0.6024 | 0.9614 |
0.0312 | 4.9476 | 8500 | 0.1730 | 0.5697 | 0.6041 | 0.5864 | 0.9595 |
0.0223 | 5.2386 | 9000 | 0.1855 | 0.5739 | 0.6086 | 0.5907 | 0.9603 |
0.0211 | 5.5297 | 9500 | 0.1962 | 0.6010 | 0.5703 | 0.5853 | 0.9607 |
0.0225 | 5.8207 | 10000 | 0.1951 | 0.6058 | 0.5778 | 0.5915 | 0.9609 |
0.0208 | 6.1118 | 10500 | 0.2037 | 0.5960 | 0.5905 | 0.5932 | 0.9604 |
0.0159 | 6.4028 | 11000 | 0.2101 | 0.5885 | 0.5812 | 0.5848 | 0.9600 |
0.0167 | 6.6938 | 11500 | 0.2092 | 0.5946 | 0.5852 | 0.5899 | 0.9605 |
0.0167 | 6.9849 | 12000 | 0.2103 | 0.5901 | 0.5826 | 0.5863 | 0.9602 |
0.0113 | 7.2759 | 12500 | 0.2245 | 0.5868 | 0.5888 | 0.5878 | 0.9601 |
0.0114 | 7.5669 | 13000 | 0.2301 | 0.6030 | 0.5799 | 0.5912 | 0.9610 |
0.0122 | 7.8580 | 13500 | 0.2336 | 0.6091 | 0.5641 | 0.5858 | 0.9605 |
0.0115 | 8.1490 | 14000 | 0.2328 | 0.5922 | 0.5868 | 0.5895 | 0.9604 |
0.0087 | 8.4400 | 14500 | 0.2393 | 0.6049 | 0.5719 | 0.5880 | 0.9607 |
0.0094 | 8.7311 | 15000 | 0.2455 | 0.5976 | 0.5812 | 0.5893 | 0.9607 |
0.0084 | 9.0221 | 15500 | 0.2436 | 0.5966 | 0.5817 | 0.5891 | 0.9605 |
0.0066 | 9.3132 | 16000 | 0.2515 | 0.5982 | 0.5724 | 0.5850 | 0.9604 |
0.0075 | 9.6042 | 16500 | 0.2522 | 0.6046 | 0.5761 | 0.5900 | 0.9607 |
0.0076 | 9.8952 | 17000 | 0.2580 | 0.6131 | 0.5687 | 0.5901 | 0.9609 |
0.0055 | 10.1863 | 17500 | 0.2519 | 0.6093 | 0.5926 | 0.6008 | 0.9612 |
0.0053 | 10.4773 | 18000 | 0.2603 | 0.6078 | 0.5840 | 0.5957 | 0.9607 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1