File size: 7,389 Bytes
7f28714
61deefd
7f28714
 
 
 
 
 
 
61deefd
 
7f28714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-scr-ner-half_data-univner_full44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-non-kd-scr-ner-half_data-univner_full44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1359
- Precision: 0.8579
- Recall: 0.8661
- F1: 0.8620
- Accuracy: 0.9848

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0095        | 0.2910  | 500   | 0.0842          | 0.8414    | 0.8590 | 0.8501 | 0.9842   |
| 0.0115        | 0.5821  | 1000  | 0.0851          | 0.8363    | 0.8626 | 0.8493 | 0.9836   |
| 0.0108        | 0.8731  | 1500  | 0.0812          | 0.8414    | 0.8664 | 0.8537 | 0.9844   |
| 0.0086        | 1.1641  | 2000  | 0.0967          | 0.8277    | 0.8729 | 0.8497 | 0.9829   |
| 0.0083        | 1.4552  | 2500  | 0.0794          | 0.8469    | 0.8652 | 0.8560 | 0.9841   |
| 0.0082        | 1.7462  | 3000  | 0.0808          | 0.8391    | 0.8712 | 0.8548 | 0.9843   |
| 0.0089        | 2.0373  | 3500  | 0.0862          | 0.8488    | 0.8645 | 0.8566 | 0.9846   |
| 0.0063        | 2.3283  | 4000  | 0.0889          | 0.8455    | 0.8735 | 0.8593 | 0.9847   |
| 0.0068        | 2.6193  | 4500  | 0.0900          | 0.8463    | 0.8638 | 0.8550 | 0.9842   |
| 0.0071        | 2.9104  | 5000  | 0.0883          | 0.8362    | 0.8691 | 0.8524 | 0.9837   |
| 0.0055        | 3.2014  | 5500  | 0.0945          | 0.8433    | 0.8588 | 0.8510 | 0.9838   |
| 0.0055        | 3.4924  | 6000  | 0.0951          | 0.8428    | 0.8687 | 0.8556 | 0.9840   |
| 0.0059        | 3.7835  | 6500  | 0.0975          | 0.8563    | 0.8551 | 0.8557 | 0.9842   |
| 0.0054        | 4.0745  | 7000  | 0.1009          | 0.8422    | 0.8673 | 0.8546 | 0.9841   |
| 0.0047        | 4.3655  | 7500  | 0.0967          | 0.8556    | 0.8589 | 0.8572 | 0.9848   |
| 0.0048        | 4.6566  | 8000  | 0.0989          | 0.8506    | 0.8694 | 0.8599 | 0.9847   |
| 0.0048        | 4.9476  | 8500  | 0.0959          | 0.8526    | 0.8713 | 0.8619 | 0.9844   |
| 0.0036        | 5.2386  | 9000  | 0.1014          | 0.8476    | 0.8706 | 0.8589 | 0.9841   |
| 0.0042        | 5.5297  | 9500  | 0.1147          | 0.8068    | 0.8613 | 0.8332 | 0.9814   |
| 0.0048        | 5.8207  | 10000 | 0.1065          | 0.8392    | 0.8691 | 0.8539 | 0.9844   |
| 0.0041        | 6.1118  | 10500 | 0.1076          | 0.8417    | 0.8758 | 0.8584 | 0.9843   |
| 0.0035        | 6.4028  | 11000 | 0.1029          | 0.8505    | 0.8732 | 0.8617 | 0.9848   |
| 0.0036        | 6.6938  | 11500 | 0.0929          | 0.8460    | 0.8719 | 0.8587 | 0.9849   |
| 0.0038        | 6.9849  | 12000 | 0.1019          | 0.8494    | 0.8631 | 0.8562 | 0.9846   |
| 0.0031        | 7.2759  | 12500 | 0.1073          | 0.8563    | 0.8575 | 0.8569 | 0.9845   |
| 0.0031        | 7.5669  | 13000 | 0.1013          | 0.8431    | 0.8696 | 0.8561 | 0.9847   |
| 0.0034        | 7.8580  | 13500 | 0.1058          | 0.8533    | 0.8596 | 0.8565 | 0.9845   |
| 0.0027        | 8.1490  | 14000 | 0.1154          | 0.8431    | 0.8719 | 0.8572 | 0.9845   |
| 0.0027        | 8.4400  | 14500 | 0.1030          | 0.8404    | 0.8785 | 0.8591 | 0.9845   |
| 0.0028        | 8.7311  | 15000 | 0.1132          | 0.8559    | 0.8510 | 0.8534 | 0.9846   |
| 0.003         | 9.0221  | 15500 | 0.1106          | 0.8514    | 0.8648 | 0.8581 | 0.9848   |
| 0.0022        | 9.3132  | 16000 | 0.1136          | 0.8586    | 0.8657 | 0.8621 | 0.9852   |
| 0.0025        | 9.6042  | 16500 | 0.1128          | 0.8494    | 0.8697 | 0.8594 | 0.9848   |
| 0.002         | 9.8952  | 17000 | 0.1139          | 0.8453    | 0.8600 | 0.8526 | 0.9841   |
| 0.0024        | 10.1863 | 17500 | 0.1124          | 0.8541    | 0.8658 | 0.8599 | 0.9849   |
| 0.002         | 10.4773 | 18000 | 0.1154          | 0.8368    | 0.8663 | 0.8513 | 0.9842   |
| 0.0019        | 10.7683 | 18500 | 0.1182          | 0.8457    | 0.8629 | 0.8542 | 0.9844   |
| 0.0023        | 11.0594 | 19000 | 0.1140          | 0.8531    | 0.8596 | 0.8563 | 0.9846   |
| 0.0018        | 11.3504 | 19500 | 0.1194          | 0.8526    | 0.8683 | 0.8604 | 0.9851   |
| 0.0016        | 11.6414 | 20000 | 0.1198          | 0.8527    | 0.8652 | 0.8589 | 0.9848   |
| 0.0021        | 11.9325 | 20500 | 0.1169          | 0.8592    | 0.8654 | 0.8623 | 0.9852   |
| 0.0016        | 12.2235 | 21000 | 0.1229          | 0.8605    | 0.8626 | 0.8616 | 0.9848   |
| 0.0021        | 12.5146 | 21500 | 0.1198          | 0.8484    | 0.8697 | 0.8589 | 0.9846   |
| 0.0019        | 12.8056 | 22000 | 0.1177          | 0.8535    | 0.8600 | 0.8568 | 0.9844   |
| 0.0013        | 13.0966 | 22500 | 0.1190          | 0.8436    | 0.8716 | 0.8574 | 0.9844   |
| 0.0016        | 13.3877 | 23000 | 0.1227          | 0.8475    | 0.8665 | 0.8569 | 0.9847   |
| 0.0012        | 13.6787 | 23500 | 0.1237          | 0.8513    | 0.8676 | 0.8594 | 0.9848   |
| 0.0015        | 13.9697 | 24000 | 0.1198          | 0.8407    | 0.8709 | 0.8555 | 0.9843   |
| 0.0012        | 14.2608 | 24500 | 0.1239          | 0.8516    | 0.8689 | 0.8602 | 0.9850   |
| 0.0014        | 14.5518 | 25000 | 0.1261          | 0.8432    | 0.8634 | 0.8532 | 0.9843   |
| 0.0015        | 14.8428 | 25500 | 0.1220          | 0.8451    | 0.8716 | 0.8582 | 0.9849   |
| 0.0013        | 15.1339 | 26000 | 0.1209          | 0.8608    | 0.8598 | 0.8603 | 0.9847   |
| 0.0011        | 15.4249 | 26500 | 0.1261          | 0.8457    | 0.8637 | 0.8546 | 0.9847   |
| 0.0011        | 15.7159 | 27000 | 0.1273          | 0.8510    | 0.8616 | 0.8563 | 0.9846   |
| 0.0022        | 16.0070 | 27500 | 0.1282          | 0.8431    | 0.8738 | 0.8582 | 0.9847   |
| 0.001         | 16.2980 | 28000 | 0.1357          | 0.8451    | 0.8628 | 0.8539 | 0.9842   |
| 0.0013        | 16.5891 | 28500 | 0.1301          | 0.8465    | 0.8658 | 0.8561 | 0.9843   |
| 0.0008        | 16.8801 | 29000 | 0.1335          | 0.8533    | 0.8678 | 0.8605 | 0.9845   |
| 0.0011        | 17.1711 | 29500 | 0.1338          | 0.8572    | 0.8654 | 0.8613 | 0.9846   |
| 0.0006        | 17.4622 | 30000 | 0.1368          | 0.8561    | 0.8628 | 0.8594 | 0.9847   |
| 0.0008        | 17.7532 | 30500 | 0.1359          | 0.8579    | 0.8661 | 0.8620 | 0.9848   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1