hasan-mr's picture
Training in progress epoch 3
d32cbfe
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_keras_callback
model-index:
  - name: hasan-mr/t5-small-finetuned-billsum-summarization
    results: []

hasan-mr/t5-small-finetuned-billsum-summarization

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: nan
  • Validation Loss: nan
  • Train Rougel: tf.Tensor(0.0, shape=(), dtype=float32)
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 1.9999999494757503e-05, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Rougel Epoch
nan nan tf.Tensor(0.0, shape=(), dtype=float32) 0
nan nan tf.Tensor(0.0, shape=(), dtype=float32) 1
nan nan tf.Tensor(0.0, shape=(), dtype=float32) 2
nan nan tf.Tensor(0.0, shape=(), dtype=float32) 3

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.14.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1