haseong8012's picture
End of training
10edb00
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - zeroth_korean
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-fine-tune_korean_byAILAB
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: zeroth_korean
          type: zeroth_korean
          config: clean
          split: test
          args: clean
        metrics:
          - name: Wer
            type: wer
            value: 0.8577021532901672

wav2vec2-large-xlsr-53-fine-tune_korean_byAILAB

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the zeroth_korean dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4406
  • Wer: 0.8577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.99 38 54.3133 1.0
No log 2.0 77 33.5397 1.0
No log 2.99 115 19.6459 1.0
No log 4.0 154 11.1346 1.0
No log 4.99 192 5.8854 1.0
No log 6.0 231 4.8784 1.0
No log 6.99 269 4.8369 1.0
No log 8.0 308 4.8535 1.0
No log 8.99 346 4.8388 1.0
No log 10.0 385 4.8360 1.0
15.1801 10.99 423 4.7653 1.0
15.1801 12.0 462 4.7385 1.0
15.1801 12.99 500 4.6927 0.9989
15.1801 14.0 539 4.6673 0.9991
15.1801 14.99 577 4.6948 0.9991
15.1801 16.0 616 4.6713 0.9991
15.1801 16.99 654 4.6603 1.0
15.1801 18.0 693 4.6428 0.9995
15.1801 18.99 731 4.6520 0.9994
15.1801 20.0 770 4.6554 0.9967
4.3888 20.99 808 4.6054 0.9998
4.3888 22.0 847 4.5723 0.9976
4.3888 22.99 885 4.4586 0.9967
4.3888 24.0 924 4.2547 0.9934
4.3888 24.99 962 3.6554 0.9931
4.3888 26.0 1001 2.8387 1.0084
4.3888 26.99 1039 2.4191 1.0551
4.3888 28.0 1078 2.0997 1.0197
4.3888 28.99 1116 2.0103 1.0176
4.3888 30.0 1155 1.8189 0.9461
4.3888 30.99 1193 1.7623 0.9726
2.7217 32.0 1232 1.7383 0.9976
2.7217 32.99 1270 1.6522 0.9584
2.7217 34.0 1309 1.5558 0.9193
2.7217 34.99 1347 1.5811 0.9440
2.7217 36.0 1386 1.5208 0.9158
2.7217 36.99 1424 1.5088 0.9038
2.7217 38.0 1463 1.5039 0.9086
2.7217 38.99 1501 1.4853 0.8987
2.7217 40.0 1540 1.4799 0.8847
2.7217 40.99 1578 1.4259 0.8694
0.7635 42.0 1617 1.4878 0.8883
0.7635 42.99 1655 1.4394 0.8693
0.7635 44.0 1694 1.4623 0.8743
0.7635 44.99 1732 1.4495 0.8710
0.7635 46.0 1771 1.4463 0.8655
0.7635 46.99 1809 1.4553 0.8704
0.7635 48.0 1848 1.4500 0.8646
0.7635 48.99 1886 1.4387 0.8566
0.7635 49.35 1900 1.4406 0.8577

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.12.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3