metadata
license: mit
tags:
- generated_from_trainer
datasets:
- stereoset
metrics:
- accuracy
model-index:
- name: gpt2_stereoset_finetuned
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: stereoset
type: stereoset
config: intersentence
split: validation
args: intersentence
metrics:
- name: Accuracy
type: accuracy
value: 0.7087912087912088
gpt2_stereoset_finetuned
This model is a fine-tuned version of gpt2 on the stereoset dataset. It achieves the following results on the evaluation set:
- Loss: 0.6545
- Accuracy: 0.7088
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.21 | 5 | 1.1855 | 0.5259 |
No log | 0.42 | 10 | 0.7056 | 0.5338 |
No log | 0.62 | 15 | 0.7009 | 0.5400 |
No log | 0.83 | 20 | 0.7230 | 0.5173 |
No log | 1.04 | 25 | 0.6666 | 0.5989 |
No log | 1.25 | 30 | 0.6812 | 0.5699 |
No log | 1.46 | 35 | 0.6479 | 0.6272 |
No log | 1.67 | 40 | 0.6323 | 0.6484 |
No log | 1.88 | 45 | 0.6306 | 0.6515 |
No log | 2.08 | 50 | 0.6474 | 0.6633 |
No log | 2.29 | 55 | 0.6158 | 0.6641 |
No log | 2.5 | 60 | 0.6059 | 0.6703 |
No log | 2.71 | 65 | 0.6151 | 0.6695 |
No log | 2.92 | 70 | 0.5860 | 0.6782 |
No log | 3.12 | 75 | 0.5808 | 0.6907 |
No log | 3.33 | 80 | 0.5953 | 0.6915 |
No log | 3.54 | 85 | 0.5860 | 0.6994 |
No log | 3.75 | 90 | 0.5918 | 0.6947 |
No log | 3.96 | 95 | 0.5915 | 0.6797 |
No log | 4.17 | 100 | 0.5779 | 0.7041 |
No log | 4.38 | 105 | 0.5902 | 0.7151 |
No log | 4.58 | 110 | 0.5740 | 0.7080 |
No log | 4.79 | 115 | 0.5640 | 0.7088 |
No log | 5.0 | 120 | 0.5786 | 0.6947 |
No log | 5.21 | 125 | 0.5892 | 0.6978 |
No log | 5.42 | 130 | 0.5722 | 0.7096 |
No log | 5.62 | 135 | 0.5743 | 0.7064 |
No log | 5.83 | 140 | 0.5873 | 0.7057 |
No log | 6.04 | 145 | 0.5915 | 0.7033 |
No log | 6.25 | 150 | 0.5978 | 0.7009 |
No log | 6.46 | 155 | 0.6034 | 0.6931 |
No log | 6.67 | 160 | 0.5908 | 0.7111 |
No log | 6.88 | 165 | 0.5954 | 0.6947 |
No log | 7.08 | 170 | 0.5882 | 0.7033 |
No log | 7.29 | 175 | 0.5895 | 0.7151 |
No log | 7.5 | 180 | 0.6077 | 0.7104 |
No log | 7.71 | 185 | 0.6121 | 0.7151 |
No log | 7.92 | 190 | 0.6086 | 0.7151 |
No log | 8.12 | 195 | 0.6182 | 0.7127 |
No log | 8.33 | 200 | 0.6412 | 0.7072 |
No log | 8.54 | 205 | 0.6425 | 0.7049 |
No log | 8.75 | 210 | 0.6369 | 0.7135 |
No log | 8.96 | 215 | 0.6405 | 0.7111 |
No log | 9.17 | 220 | 0.6431 | 0.7135 |
No log | 9.38 | 225 | 0.6474 | 0.7127 |
No log | 9.58 | 230 | 0.6595 | 0.7041 |
No log | 9.79 | 235 | 0.6580 | 0.7041 |
No log | 10.0 | 240 | 0.6545 | 0.7088 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2