henryscheible's picture
update model card README.md
5c98e86
|
raw
history blame
6.34 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - crows_pairs
metrics:
  - accuracy
model-index:
  - name: t5-small_crows_pairs_finetuned
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: crows_pairs
          type: crows_pairs
          config: crows_pairs
          split: test
          args: crows_pairs
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5827814569536424

t5-small_crows_pairs_finetuned

This model is a fine-tuned version of t5-small on the crows_pairs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5333
  • Accuracy: 0.5828
  • Tp: 0.4967
  • Tn: 0.0861
  • Fp: 0.4106
  • Fn: 0.0066

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
4.1732 1.05 20 2.2158 0.8245 0.4404 0.3841 0.1126 0.0629
0.6547 2.11 40 0.4472 0.5033 0.5033 0.0 0.4967 0.0
0.4173 3.16 60 0.3662 0.5033 0.5033 0.0 0.4967 0.0
0.3822 4.21 80 0.3529 0.5033 0.5033 0.0 0.4967 0.0
0.394 5.26 100 0.3584 0.5033 0.5033 0.0 0.4967 0.0
0.36 6.32 120 0.3446 0.5033 0.5033 0.0 0.4967 0.0
0.3472 7.37 140 0.3410 0.5033 0.5033 0.0 0.4967 0.0
0.3241 8.42 160 0.3369 0.5033 0.5033 0.0 0.4967 0.0
0.3247 9.47 180 0.3252 0.5033 0.5033 0.0 0.4967 0.0
0.3045 10.53 200 0.3152 0.5033 0.5033 0.0 0.4967 0.0
0.2863 11.58 220 0.3034 0.5232 0.5033 0.0199 0.4768 0.0
0.2462 12.63 240 0.2958 0.5232 0.5033 0.0199 0.4768 0.0
0.2151 13.68 260 0.2988 0.5232 0.5033 0.0199 0.4768 0.0
0.2323 14.74 280 0.2964 0.5397 0.5033 0.0364 0.4603 0.0
0.1951 15.79 300 0.2994 0.5430 0.5033 0.0397 0.4570 0.0
0.1848 16.84 320 0.3049 0.5530 0.5033 0.0497 0.4470 0.0
0.1875 17.89 340 0.3117 0.5596 0.5033 0.0563 0.4404 0.0
0.1646 18.95 360 0.3291 0.5596 0.5033 0.0563 0.4404 0.0
0.1622 20.0 380 0.3341 0.5563 0.5033 0.0530 0.4437 0.0
0.1511 21.05 400 0.3415 0.5596 0.5033 0.0563 0.4404 0.0
0.1497 22.11 420 0.3556 0.5629 0.5033 0.0596 0.4371 0.0
0.1195 23.16 440 0.3717 0.5563 0.5033 0.0530 0.4437 0.0
0.1319 24.21 460 0.3753 0.5662 0.5033 0.0629 0.4338 0.0
0.1099 25.26 480 0.3812 0.5728 0.5033 0.0695 0.4272 0.0
0.1078 26.32 500 0.3879 0.5695 0.5033 0.0662 0.4305 0.0
0.091 27.37 520 0.4009 0.5762 0.5 0.0762 0.4205 0.0033
0.0939 28.42 540 0.4204 0.5795 0.5 0.0795 0.4172 0.0033
0.1011 29.47 560 0.4295 0.5828 0.5 0.0828 0.4139 0.0033
0.0871 30.53 580 0.4336 0.5762 0.5 0.0762 0.4205 0.0033
0.0782 31.58 600 0.4421 0.5762 0.5 0.0762 0.4205 0.0033
0.0842 32.63 620 0.4455 0.5762 0.5 0.0762 0.4205 0.0033
0.0779 33.68 640 0.4588 0.5828 0.4967 0.0861 0.4106 0.0066
0.0684 34.74 660 0.4728 0.5795 0.4967 0.0828 0.4139 0.0066
0.0719 35.79 680 0.4747 0.5828 0.4967 0.0861 0.4106 0.0066
0.0754 36.84 700 0.4822 0.5795 0.4967 0.0828 0.4139 0.0066
0.0622 37.89 720 0.4887 0.5795 0.4967 0.0828 0.4139 0.0066
0.0604 38.95 740 0.4963 0.5795 0.4967 0.0828 0.4139 0.0066
0.0592 40.0 760 0.5034 0.5828 0.4967 0.0861 0.4106 0.0066
0.0621 41.05 780 0.5099 0.5795 0.4967 0.0828 0.4139 0.0066
0.0548 42.11 800 0.5151 0.5861 0.4967 0.0894 0.4073 0.0066
0.0653 43.16 820 0.5197 0.5795 0.4967 0.0828 0.4139 0.0066
0.0593 44.21 840 0.5238 0.5795 0.4967 0.0828 0.4139 0.0066
0.0445 45.26 860 0.5287 0.5795 0.4967 0.0828 0.4139 0.0066
0.0541 46.32 880 0.5298 0.5828 0.4967 0.0861 0.4106 0.0066
0.0578 47.37 900 0.5318 0.5795 0.4967 0.0828 0.4139 0.0066
0.0514 48.42 920 0.5330 0.5828 0.4967 0.0861 0.4106 0.0066
0.0451 49.47 940 0.5333 0.5828 0.4967 0.0861 0.4106 0.0066

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.13.2