henryscheible's picture
update model card README.md
bfedaf9
|
raw
history blame
4.48 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - crows_pairs
metrics:
  - accuracy
model-index:
  - name: t5-small_crows_pairs_finetuned
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: crows_pairs
          type: crows_pairs
          config: crows_pairs
          split: test
          args: crows_pairs
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6390728476821192

t5-small_crows_pairs_finetuned

This model is a fine-tuned version of t5-small on the crows_pairs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7111
  • Accuracy: 0.6391
  • Tp: 0.4934
  • Tn: 0.1457
  • Fp: 0.3510
  • Fn: 0.0099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
0.6595 1.05 20 0.3672 0.5033 0.5033 0.0 0.4967 0.0
0.4048 2.11 40 0.3723 0.5033 0.5033 0.0 0.4967 0.0
0.3397 3.16 60 0.3397 0.5033 0.5033 0.0 0.4967 0.0
0.3215 4.21 80 0.3227 0.5132 0.5033 0.0099 0.4868 0.0
0.3078 5.26 100 0.3381 0.6060 0.5033 0.1026 0.3940 0.0
0.2258 6.32 120 0.3012 0.5629 0.5 0.0629 0.4338 0.0033
0.2099 7.37 140 0.3018 0.5894 0.5 0.0894 0.4073 0.0033
0.1531 8.42 160 0.3379 0.5464 0.5033 0.0430 0.4536 0.0
0.129 9.47 180 0.3602 0.5993 0.5 0.0993 0.3974 0.0033
0.0956 10.53 200 0.3846 0.5762 0.5 0.0762 0.4205 0.0033
0.0736 11.58 220 0.4245 0.5695 0.5033 0.0662 0.4305 0.0
0.0474 12.63 240 0.4938 0.5695 0.5033 0.0662 0.4305 0.0
0.0369 13.68 260 0.5201 0.5960 0.5 0.0960 0.4007 0.0033
0.0323 14.74 280 0.5559 0.5993 0.4934 0.1060 0.3907 0.0099
0.0267 15.79 300 0.5965 0.5894 0.5 0.0894 0.4073 0.0033
0.026 16.84 320 0.6052 0.5960 0.4967 0.0993 0.3974 0.0066
0.0194 17.89 340 0.6144 0.6126 0.4934 0.1192 0.3775 0.0099
0.0242 18.95 360 0.6286 0.6126 0.4934 0.1192 0.3775 0.0099
0.0274 20.0 380 0.6313 0.6325 0.4901 0.1424 0.3543 0.0132
0.0151 21.05 400 0.6685 0.6192 0.4934 0.1258 0.3709 0.0099
0.0131 22.11 420 0.6815 0.6258 0.4934 0.1325 0.3642 0.0099
0.0095 23.16 440 0.6961 0.6192 0.4967 0.1225 0.3742 0.0066
0.0064 24.21 460 0.6980 0.6325 0.4934 0.1391 0.3576 0.0099
0.0103 25.26 480 0.7117 0.6192 0.4934 0.1258 0.3709 0.0099
0.0083 26.32 500 0.7096 0.6258 0.4934 0.1325 0.3642 0.0099
0.0079 27.37 520 0.7198 0.6258 0.4934 0.1325 0.3642 0.0099
0.01 28.42 540 0.7210 0.6258 0.4934 0.1325 0.3642 0.0099
0.011 29.47 560 0.7111 0.6391 0.4934 0.1457 0.3510 0.0099

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.13.2