mms-MGB3 / README.md
herwoww's picture
Model save
6db6f32 verified
|
raw
history blame
3.11 kB
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-MGB3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mms-MGB3
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9382
- Wer: 0.6591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 14
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.7535 | 0.13 | 250 | 8.6735 | 1.0023 |
| 3.2385 | 0.27 | 500 | 3.3341 | 1.0003 |
| 2.3512 | 0.4 | 750 | 2.0937 | 0.9027 |
| 1.4967 | 0.53 | 1000 | 1.3694 | 0.7637 |
| 1.3214 | 0.67 | 1250 | 1.2237 | 0.7347 |
| 1.2072 | 0.8 | 1500 | 1.1672 | 0.7176 |
| 1.1913 | 0.93 | 1750 | 1.1334 | 0.7108 |
| 1.1127 | 1.07 | 2000 | 1.1102 | 0.7044 |
| 1.1454 | 1.2 | 2250 | 1.0919 | 0.6996 |
| 1.1128 | 1.33 | 2500 | 1.0763 | 0.6955 |
| 1.086 | 1.47 | 2750 | 1.0629 | 0.6916 |
| 1.1285 | 1.6 | 3000 | 1.0503 | 0.6888 |
| 1.081 | 1.73 | 3250 | 1.0406 | 0.6886 |
| 1.0449 | 1.86 | 3500 | 1.0320 | 0.6857 |
| 1.0625 | 2.0 | 3750 | 1.0231 | 0.6849 |
| 1.0892 | 2.13 | 4000 | 1.0157 | 0.6824 |
| 1.0566 | 2.26 | 4250 | 1.0097 | 0.6795 |
| 1.0972 | 2.4 | 4500 | 1.0036 | 0.6747 |
| 1.0617 | 2.53 | 4750 | 0.9957 | 0.6744 |
| 1.0441 | 2.66 | 5000 | 0.9881 | 0.6756 |
| 1.0589 | 2.8 | 5250 | 0.9807 | 0.6718 |
| 1.0005 | 2.93 | 5500 | 0.9758 | 0.6713 |
| 1.0447 | 3.06 | 5750 | 0.9701 | 0.6694 |
| 0.9722 | 3.2 | 6000 | 0.9667 | 0.6664 |
| 0.9873 | 3.33 | 6250 | 0.9595 | 0.6675 |
| 0.9857 | 3.46 | 6500 | 0.9551 | 0.6633 |
| 0.9625 | 3.6 | 6750 | 0.9519 | 0.6633 |
| 0.9748 | 3.73 | 7000 | 0.9464 | 0.6607 |
| 0.9626 | 3.86 | 7250 | 0.9427 | 0.6617 |
| 1.0242 | 4.0 | 7500 | 0.9382 | 0.6591 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.19.1
- Tokenizers 0.13.3