mms-SADA / README.md
herwoww's picture
End of training
e3c11f2 verified
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-SADA
    results: []

mms-SADA

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1720
  • Wer: 0.6627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 14
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
1.7672 0.0 250 1.3082 0.6868
1.7864 0.01 500 1.3002 0.6852
1.445 0.01 750 1.2947 0.6846
1.6083 0.01 1000 1.2921 0.6831
1.6405 0.02 1250 1.2864 0.6819
1.6112 0.02 1500 1.2774 0.6826
1.5307 0.02 1750 1.2730 0.6812
1.8135 0.02 2000 1.2694 0.6795
1.6133 0.03 2250 1.2660 0.6783
1.8358 0.03 2500 1.2633 0.6758
1.507 0.03 2750 1.2563 0.6774
1.7197 0.04 3000 1.2553 0.6750
1.5191 0.04 3250 1.2498 0.6737
1.4389 0.04 3500 1.2478 0.6734
1.6184 0.05 3750 1.2401 0.6723
1.6814 0.05 4000 1.2357 0.6716
1.4742 0.05 4250 1.2304 0.6708
1.4276 0.06 4500 1.2302 0.6700
1.4855 0.06 4750 1.2224 0.6693
1.4409 0.06 5000 1.2197 0.6693
1.4562 0.07 5250 1.2162 0.6688
1.5353 0.07 5500 1.2119 0.6689
1.5601 0.07 5750 1.2105 0.6696
1.4666 0.07 6000 1.2066 0.6679
1.6642 0.08 6250 1.2010 0.6687
1.5008 0.08 6500 1.2005 0.6669
1.6213 0.08 6750 1.2008 0.6665
1.7335 0.09 7000 1.1938 0.6675
1.421 0.09 7250 1.1921 0.6666
1.6255 0.09 7500 1.1919 0.6645
1.4785 0.1 7750 1.1895 0.6646
1.6736 0.1 8000 1.1918 0.6634
1.4629 0.1 8250 1.1841 0.6645
1.6599 0.11 8500 1.1832 0.6628
1.4726 0.11 8750 1.1790 0.6649
1.6825 0.11 9000 1.1774 0.6636
1.6216 0.11 9250 1.1815 0.6630
1.4291 0.12 9500 1.1768 0.6637
1.2947 0.12 9750 1.1743 0.6623
1.4702 0.12 10000 1.1720 0.6627

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1
  • Datasets 2.19.1
  • Tokenizers 0.13.3