Edit model card

Model Card for Model ID

ONNX export code

pip install --upgrade git+https://github.com/huggingface/transformers.git@xenova-patch-2 onnx==1.17.0 onnxruntime==1.20.1 optimum==1.23.3 onnxslim==0.1.42
import os
import torch
from transformers import (
    AutoProcessor,
    Qwen2VLForConditionalGeneration,
    DynamicCache,
)


class PatchedQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
    def forward(self, *args):
        inputs_embeds, attention_mask, position_ids, *past_key_values_args = args

        # Convert past_key_values list to DynamicCache
        if len(past_key_values_args) == 0:
            past_key_values = None
        else:
            past_key_values = DynamicCache(self.config.num_hidden_layers)
            for i in range(self.config.num_hidden_layers):
                key = past_key_values_args.pop(0)
                value = past_key_values_args.pop(0)
                past_key_values.update(key_states=key, value_states=value, layer_idx=i)

        o = super().forward(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
        )

        flattened_past_key_values_outputs = {
            "logits": o.logits,
        }
        output_past_key_values: DynamicCache = o.past_key_values
        for i, (key, value) in enumerate(
            zip(output_past_key_values.key_cache, output_past_key_values.value_cache)
        ):
            flattened_past_key_values_outputs[f"present.{i}.key"] = key
            flattened_past_key_values_outputs[f"present.{i}.value"] = value

        return flattened_past_key_values_outputs


# Constants
OUTPUT_FOLDER = "output"
EMBEDDING_MODEL_NAME = "embed_tokens.onnx"
TEXT_MODEL_NAME = "decoder_model_merged.onnx"
VISION_MODEL_NAME = "vision_encoder.onnx"
TEMP_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "temp")
FINAL_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "onnx")


# Load model and processor
model_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
model = PatchedQwen2VLForConditionalGeneration.from_pretrained(model_id).eval()
processor = AutoProcessor.from_pretrained(model_id)


# Save model configs and processor
model.config.save_pretrained(OUTPUT_FOLDER)
model.generation_config.save_pretrained(OUTPUT_FOLDER)
processor.save_pretrained(OUTPUT_FOLDER)
os.makedirs(TEMP_MODEL_OUTPUT_FOLDER, exist_ok=True)


# Configuration values
## Text model
text_config = model.config
num_heads = text_config.num_attention_heads
num_key_value_heads = text_config.num_key_value_heads
head_dim = text_config.hidden_size // num_heads
num_layers = text_config.num_hidden_layers
hidden_size = text_config.hidden_size

## Vision model
vision_config = model.config.vision_config
channel = vision_config.in_chans
temporal_patch_size = vision_config.temporal_patch_size
patch_size = vision_config.spatial_patch_size


# Dummy input sizes
grid_t, grid_h, grid_w = [1, 16, 16]
batch_size = 1
sequence_length = 16
num_channels = 3
past_sequence_length = 0

image_batch_size = 1  # TODO: Add support for > 1 images
assert image_batch_size == 1


# Dummy inputs
## Embedding inputs
input_ids = torch.randint(
    0, model.config.vocab_size, (batch_size, sequence_length), dtype=torch.int64
)

## Text inputs
dummy_past_key_values_kwargs = {
    f"past_key_values.{i}.{key}": torch.zeros(
        batch_size,
        num_key_value_heads,
        past_sequence_length,
        head_dim,
        dtype=torch.float32,
    )
    for i in range(num_layers)
    for key in ["key", "value"]
}
inputs_embeds = torch.ones(
    batch_size, sequence_length, hidden_size, dtype=torch.float32
)
attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.int64)
position_ids = torch.ones(3, batch_size, sequence_length, dtype=torch.int64)

## Vision inputs
grid_thw = torch.tensor(
    [[grid_t, grid_h, grid_w]] * image_batch_size, dtype=torch.int64
)
pixel_values = torch.randn(
    image_batch_size * grid_t * grid_h * grid_w,
    channel * temporal_patch_size * patch_size * patch_size,
    dtype=torch.float32,
)


# ONNX Exports
## Embedding model
embedding_inputs = dict(input_ids=input_ids)
embedding_inputs_positional = tuple(embedding_inputs.values())
model.model.embed_tokens(*embedding_inputs_positional)  # Test forward pass
EMBED_TOKENS_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, EMBEDDING_MODEL_NAME)
torch.onnx.export(
    model.model.embed_tokens,
    args=embedding_inputs_positional,
    f=EMBED_TOKENS_OUTPUT_PATH,
    export_params=True,
    opset_version=14,
    do_constant_folding=True,
    input_names=list(embedding_inputs.keys()),
    output_names=["inputs_embeds"],
    dynamic_axes={
        "input_ids": {0: "batch_size", 1: "sequence_length"},
        "inputs_embeds": {0: "batch_size", 1: "sequence_length"},
    },
)

## Text model
text_inputs = dict(
    inputs_embeds=inputs_embeds,
    attention_mask=attention_mask,
    position_ids=position_ids,
    **dummy_past_key_values_kwargs,
)
text_inputs_positional = tuple(text_inputs.values())
text_outputs = model.forward(*text_inputs_positional)  # Test forward pass
TEXT_MODEL_OUTPUT_PATH=os.path.join(TEMP_MODEL_OUTPUT_FOLDER, TEXT_MODEL_NAME)
torch.onnx.export(
    model,
    args=text_inputs_positional,
    f=TEXT_MODEL_OUTPUT_PATH,
    export_params=True,
    opset_version=14,
    do_constant_folding=True,
    input_names=list(text_inputs.keys()),
    output_names=["logits"]
    + [f"present.{i}.{key}" for i in range(num_layers) for key in ["key", "value"]],
    dynamic_axes={
        "inputs_embeds": {0: "batch_size", 1: "sequence_length"},
        "attention_mask": {0: "batch_size", 1: "sequence_length"},
        "position_ids": {1: "batch_size", 2: "sequence_length"},
        **{
            f"past_key_values.{i}.{key}": {0: "batch_size", 2: "past_sequence_length"}
            for i in range(num_layers)
            for key in ["key", "value"]
        },
        "logits": {0: "batch_size", 1: "sequence_length"},
        **{
            f"present.{i}.{key}": {0: "batch_size", 2: "past_sequence_length + 1"}
            for i in range(num_layers)
            for key in ["key", "value"]
        },
    },
)

## Vision model
vision_inputs = dict(
    pixel_values=pixel_values,
    grid_thw=grid_thw,
)
vision_inputs_positional = tuple(vision_inputs.values())
vision_outputs = model.visual.forward(*vision_inputs_positional)  # Test forward pass
VISION_ENCODER_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, VISION_MODEL_NAME)
torch.onnx.export(
    model.visual,
    args=vision_inputs_positional,
    f=VISION_ENCODER_OUTPUT_PATH,
    export_params=True,
    opset_version=14,
    do_constant_folding=True,
    input_names=list(vision_inputs.keys()),
    output_names=["image_features"],
    dynamic_axes={
        "pixel_values": {
            0: "batch_size * grid_t * grid_h * grid_w",
            1: "channel * temporal_patch_size * patch_size * patch_size",
        },
        "grid_thw": {0: "batch_size"},
        "image_features": {0: "batch_size * grid_t * grid_h * grid_w"},
    },
)


# Post-processing
import onnx
import onnxslim
from optimum.onnx.graph_transformations import check_and_save_model

os.makedirs(FINAL_MODEL_OUTPUT_FOLDER, exist_ok=True)
for name in (EMBEDDING_MODEL_NAME, TEXT_MODEL_NAME, VISION_MODEL_NAME):
    temp_model_path = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, name)
    
    ## Shape inference (especially needed by the vision encoder)
    onnx.shape_inference.infer_shapes_path(temp_model_path, check_type=True, strict_mode=True)
    
    ## Attempt to optimize the model with onnxslim
    try:
        model = onnxslim.slim(temp_model_path)
    except Exception as e:
        print(f"Failed to slim {temp_model_path}: {e}")
        model = onnx.load(temp_model_path)

    ## Save model
    final_model_path = os.path.join(FINAL_MODEL_OUTPUT_FOLDER, name)
    check_and_save_model(model, final_model_path)

## Cleanup
import shutil
shutil.rmtree(TEMP_MODEL_OUTPUT_FOLDER)

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
734
Safetensors
Model size
4.9M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.