results_arat5_wiki / README.md
hiba2's picture
End of training
cd82749 verified
|
raw
history blame
3.62 kB
metadata
base_model: UBC-NLP/AraT5v2-base-1024
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: results_arat5_wiki
    results: []

results_arat5_wiki

This model is a fine-tuned version of UBC-NLP/AraT5v2-base-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4401
  • Rouge1: 0.0905
  • Rouge2: 0.0
  • Rougel: 0.0915
  • Rougelsum: 0.0912
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
7.7921 0.4757 500 6.2870 0.0905 0.0 0.0915 0.0912 19.0
5.9839 0.9515 1000 5.5934 0.0905 0.0 0.0915 0.0912 19.0
5.4311 1.4272 1500 5.0896 0.0905 0.0 0.0915 0.0912 19.0
5.1245 1.9029 2000 4.7004 0.0905 0.0 0.0915 0.0912 19.0
4.7258 2.3787 2500 4.3347 0.0905 0.0 0.0915 0.0912 19.0
4.5072 2.8544 3000 4.0503 0.0905 0.0 0.0915 0.0912 19.0
4.2388 3.3302 3500 3.8321 0.0905 0.0 0.0915 0.0912 19.0
4.0817 3.8059 4000 3.6509 0.0905 0.0 0.0915 0.0912 19.0
3.8843 4.2816 4500 3.4451 0.0905 0.0 0.0915 0.0912 19.0
3.7958 4.7574 5000 3.3071 0.0905 0.0 0.0915 0.0912 19.0
3.6397 5.2331 5500 3.1619 0.0905 0.0 0.0915 0.0912 19.0
3.5658 5.7088 6000 3.0068 0.0905 0.0 0.0915 0.0912 19.0
3.4171 6.1846 6500 2.9459 0.0905 0.0 0.0915 0.0912 19.0
3.2697 6.6603 7000 2.8074 0.0842 0.0 0.0849 0.0844 19.0
3.3168 7.1361 7500 2.7153 0.0905 0.0 0.0915 0.0912 19.0
3.1594 7.6118 8000 2.6676 0.0905 0.0 0.0915 0.0912 19.0
3.0928 8.0875 8500 2.5849 0.0905 0.0 0.0915 0.0912 19.0
3.0318 8.5633 9000 2.5152 0.0905 0.0 0.0915 0.0912 19.0
3.0392 9.0390 9500 2.4849 0.0902 0.0 0.0911 0.0908 19.0
2.9917 9.5147 10000 2.4569 0.0768 0.0001 0.0774 0.0768 19.0
2.9281 9.9905 10500 2.4401 0.0905 0.0 0.0915 0.0912 19.0

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1