T5_fine_tune / README.md
hieungo1410's picture
End of training
dde9065 verified
|
raw
history blame
4 kB
metadata
license: mit
base_model: VietAI/vit5-base
tags:
  - generated_from_trainer
model-index:
  - name: T5_fine_tune
    results: []

T5_fine_tune

This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0439
  • Score: 42.2142
  • Counts: [2084, 1925, 1770, 1616]
  • Totals: [2111, 1964, 1817, 1670]
  • Precisions: [98.72098531501658, 98.0142566191446, 97.41331865712714, 96.76646706586827]
  • Bp: 0.4320
  • Sys Len: 2111
  • Ref Len: 3883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Score Counts Totals Precisions Bp Sys Len Ref Len
No log 1.0 71 0.3049 34.8561 [1920, 1622, 1384, 1161] [2160, 2013, 1866, 1719] [88.88888888888889, 80.57625434674615, 74.16934619506966, 67.53926701570681] 0.4504 2160 3883
No log 2.0 142 0.2064 37.7340 [1984, 1738, 1528, 1321] [2150, 2003, 1856, 1709] [92.27906976744185, 86.76984523215177, 82.32758620689656, 77.29666471620831] 0.4466 2150 3883
No log 3.0 213 0.1438 39.7849 [2029, 1813, 1629, 1452] [2141, 1994, 1847, 1700] [94.76879962634283, 90.92276830491474, 88.19707634001082, 85.41176470588235] 0.4432 2141 3883
No log 4.0 284 0.1157 40.8740 [2050, 1864, 1693, 1524] [2128, 1981, 1834, 1687] [96.33458646616542, 94.09389197375063, 92.31188658669575, 90.33787788974512] 0.4384 2128 3883
No log 5.0 355 0.0860 41.2231 [2066, 1889, 1722, 1559] [2108, 1961, 1814, 1667] [98.00759013282732, 96.32840387557368, 94.92833517089305, 93.52129574085183] 0.4308 2108 3883
No log 6.0 426 0.0727 41.5588 [2068, 1897, 1738, 1583] [2110, 1963, 1816, 1669] [98.00947867298578, 96.63779928680592, 95.70484581497797, 94.84721390053924] 0.4316 2110 3883
No log 7.0 497 0.0564 41.9034 [2076, 1914, 1759, 1607] [2105, 1958, 1811, 1664] [98.62232779097387, 97.75280898876404, 97.12865819988956, 96.57451923076923] 0.4297 2105 3883
0.3736 8.0 568 0.0497 42.1238 [2080, 1919, 1763, 1608] [2115, 1968, 1821, 1674] [98.3451536643026, 97.51016260162602, 96.81493684788578, 96.05734767025089] 0.4335 2115 3883
0.3736 9.0 639 0.0449 42.2673 [2084, 1927, 1774, 1621] [2110, 1963, 1816, 1669] [98.76777251184834, 98.16607233825776, 97.68722466960352, 97.12402636309167] 0.4316 2110 3883
0.3736 10.0 710 0.0439 42.2142 [2084, 1925, 1770, 1616] [2111, 1964, 1817, 1670] [98.72098531501658, 98.0142566191446, 97.41331865712714, 96.76646706586827] 0.4320 2111 3883

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0