metadata
language:
- en
license: apache-2.0
library_name: peft
tags:
- text-generation-inference
datasets:
- hipnologo/Ecommerce-FAQ-Chatbot-Dataset
pipeline_tag: text-generation
base_model: tiiuae/falcon-7b
Falcon 7B LLM Fine Tune Model
Model description
This model is a fine-tuned version of the tiiuae/falcon-7b
model using the QLoRa library and the PEFT library.
Intended uses & limitations
How to use
- The model and tokenizer are loaded using the
from_pretrained
methods. - The padding token of the tokenizer is set to be the same as the end-of-sentence (EOS) token.
- The
generation_config
is used to set parameters for generating responses, such as the maximum number of new tokens to generate and the temperature for the softmax function. - The prompt is defined, encoded using the tokenizer, and passed to the
model.generate
method to generate a response. - The generated response is decoded using the tokenizer and printed.
# Import necessary classes and functions
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftConfig, PeftModel
# Specify the model
PEFT_MODEL = "hipnologo/falcon-7b-qlora-finetune-chatbot"
# Load the PEFT config
config = PeftConfig.from_pretrained(PEFT_MODEL)
# Load the base model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
config.based_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Set the padding token to be the same as the EOS token
tokenizer.pad_token = tokenizer.eos_token
# Load the PEFT model
model = PeftModel.from_pretrained(model, PEFT_MODEL)
# Set the generation parameters
generation_config = model.generation_config
generation_config.max_new_tokens = 200
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
# Define the prompt
prompt = """
<human>: How can I create an account?
<assistant>:
""".strip()
print(prompt)
# Encode the prompt
encoding = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate a response
with torch.inference_mode():
outputs = model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
generation_config=generation_config,
)
# Print the generated response
print(tokenizer.decode(outputs[0],skip_special_tokens=True))
Training procedure
The model was fine-tuned on the Ecommerce-FAQ-Chatbot-Dataset using the bitsandbytes
quantization config:
- load_in_8bit:
False
- load_in_4bit:
True
- llm_int8_threshold:
6.0
- llm_int8_skip_modules:
None
- llm_int8_enable_fp32_cpu_offload:
False
- llm_int8_has_fp16_weight:
False
- bnb_4bit_quant_type:
nf4
- bnb_4bit_use_double_quant:
True
- bnb_4bit_compute_dtype:
bfloat16
Framework versions
- PEFT 0.4.0.dev0
Evaluation results
The model was trained for 80 steps, with the training loss decreasing from 0.184 to nearly 0. The final training loss was 0.03094411873175886
.
- Trainable params: 2359296
- All params: 3611104128
- Trainable%: 0.06533447711203746
License
This model is licensed under Apache 2.0. Please see the LICENSE for more information.