metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_rms_lr00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6976744186046512
hushem_1x_deit_tiny_rms_lr00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7349
- Accuracy: 0.6977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.2207 | 0.4419 |
1.2147 | 2.0 | 12 | 0.9891 | 0.6047 |
1.2147 | 3.0 | 18 | 0.7510 | 0.7209 |
0.576 | 4.0 | 24 | 0.7741 | 0.7209 |
0.2188 | 5.0 | 30 | 0.7926 | 0.6279 |
0.2188 | 6.0 | 36 | 0.8648 | 0.6047 |
0.0657 | 7.0 | 42 | 0.9083 | 0.6279 |
0.0657 | 8.0 | 48 | 0.6744 | 0.7209 |
0.024 | 9.0 | 54 | 0.6865 | 0.6744 |
0.0081 | 10.0 | 60 | 0.7121 | 0.7209 |
0.0081 | 11.0 | 66 | 0.7038 | 0.6279 |
0.0043 | 12.0 | 72 | 0.6990 | 0.6977 |
0.0043 | 13.0 | 78 | 0.6958 | 0.6744 |
0.003 | 14.0 | 84 | 0.7014 | 0.6744 |
0.0024 | 15.0 | 90 | 0.6973 | 0.6744 |
0.0024 | 16.0 | 96 | 0.7050 | 0.6744 |
0.002 | 17.0 | 102 | 0.7045 | 0.6512 |
0.002 | 18.0 | 108 | 0.7008 | 0.6512 |
0.0017 | 19.0 | 114 | 0.7130 | 0.6744 |
0.0015 | 20.0 | 120 | 0.7143 | 0.6744 |
0.0015 | 21.0 | 126 | 0.7112 | 0.6744 |
0.0013 | 22.0 | 132 | 0.7160 | 0.6744 |
0.0013 | 23.0 | 138 | 0.7131 | 0.6744 |
0.0012 | 24.0 | 144 | 0.7144 | 0.6744 |
0.0011 | 25.0 | 150 | 0.7160 | 0.6744 |
0.0011 | 26.0 | 156 | 0.7202 | 0.6977 |
0.001 | 27.0 | 162 | 0.7225 | 0.6977 |
0.001 | 28.0 | 168 | 0.7211 | 0.6744 |
0.001 | 29.0 | 174 | 0.7237 | 0.6977 |
0.0009 | 30.0 | 180 | 0.7265 | 0.6977 |
0.0009 | 31.0 | 186 | 0.7272 | 0.6977 |
0.0008 | 32.0 | 192 | 0.7283 | 0.6977 |
0.0008 | 33.0 | 198 | 0.7304 | 0.6977 |
0.0008 | 34.0 | 204 | 0.7314 | 0.6977 |
0.0008 | 35.0 | 210 | 0.7309 | 0.6977 |
0.0008 | 36.0 | 216 | 0.7324 | 0.6977 |
0.0008 | 37.0 | 222 | 0.7325 | 0.6977 |
0.0008 | 38.0 | 228 | 0.7335 | 0.6977 |
0.0007 | 39.0 | 234 | 0.7342 | 0.6977 |
0.0007 | 40.0 | 240 | 0.7346 | 0.6977 |
0.0007 | 41.0 | 246 | 0.7348 | 0.6977 |
0.0007 | 42.0 | 252 | 0.7349 | 0.6977 |
0.0007 | 43.0 | 258 | 0.7349 | 0.6977 |
0.0007 | 44.0 | 264 | 0.7349 | 0.6977 |
0.0007 | 45.0 | 270 | 0.7349 | 0.6977 |
0.0007 | 46.0 | 276 | 0.7349 | 0.6977 |
0.0007 | 47.0 | 282 | 0.7349 | 0.6977 |
0.0007 | 48.0 | 288 | 0.7349 | 0.6977 |
0.0007 | 49.0 | 294 | 0.7349 | 0.6977 |
0.0007 | 50.0 | 300 | 0.7349 | 0.6977 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1