metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_sgd_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.27906976744186046
hushem_1x_deit_tiny_sgd_00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.6900
- Accuracy: 0.2791
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.7081 | 0.2791 |
1.7325 | 2.0 | 12 | 1.7072 | 0.2791 |
1.7325 | 3.0 | 18 | 1.7063 | 0.2791 |
1.7152 | 4.0 | 24 | 1.7055 | 0.2791 |
1.6813 | 5.0 | 30 | 1.7046 | 0.2791 |
1.6813 | 6.0 | 36 | 1.7038 | 0.2791 |
1.6984 | 7.0 | 42 | 1.7030 | 0.2791 |
1.6984 | 8.0 | 48 | 1.7022 | 0.2791 |
1.7131 | 9.0 | 54 | 1.7014 | 0.2791 |
1.7337 | 10.0 | 60 | 1.7007 | 0.2791 |
1.7337 | 11.0 | 66 | 1.7000 | 0.2791 |
1.7143 | 12.0 | 72 | 1.6993 | 0.2791 |
1.7143 | 13.0 | 78 | 1.6987 | 0.2791 |
1.6884 | 14.0 | 84 | 1.6981 | 0.2791 |
1.7252 | 15.0 | 90 | 1.6975 | 0.2791 |
1.7252 | 16.0 | 96 | 1.6969 | 0.2791 |
1.7269 | 17.0 | 102 | 1.6963 | 0.2791 |
1.7269 | 18.0 | 108 | 1.6958 | 0.2791 |
1.6858 | 19.0 | 114 | 1.6953 | 0.2791 |
1.7013 | 20.0 | 120 | 1.6948 | 0.2791 |
1.7013 | 21.0 | 126 | 1.6943 | 0.2791 |
1.7051 | 22.0 | 132 | 1.6939 | 0.2791 |
1.7051 | 23.0 | 138 | 1.6935 | 0.2791 |
1.6834 | 24.0 | 144 | 1.6931 | 0.2791 |
1.6977 | 25.0 | 150 | 1.6927 | 0.2791 |
1.6977 | 26.0 | 156 | 1.6924 | 0.2791 |
1.7016 | 27.0 | 162 | 1.6920 | 0.2791 |
1.7016 | 28.0 | 168 | 1.6917 | 0.2791 |
1.7242 | 29.0 | 174 | 1.6915 | 0.2791 |
1.6808 | 30.0 | 180 | 1.6912 | 0.2791 |
1.6808 | 31.0 | 186 | 1.6910 | 0.2791 |
1.7032 | 32.0 | 192 | 1.6908 | 0.2791 |
1.7032 | 33.0 | 198 | 1.6906 | 0.2791 |
1.6261 | 34.0 | 204 | 1.6905 | 0.2791 |
1.7412 | 35.0 | 210 | 1.6903 | 0.2791 |
1.7412 | 36.0 | 216 | 1.6902 | 0.2791 |
1.6899 | 37.0 | 222 | 1.6901 | 0.2791 |
1.6899 | 38.0 | 228 | 1.6901 | 0.2791 |
1.6944 | 39.0 | 234 | 1.6900 | 0.2791 |
1.6965 | 40.0 | 240 | 1.6900 | 0.2791 |
1.6965 | 41.0 | 246 | 1.6900 | 0.2791 |
1.6787 | 42.0 | 252 | 1.6900 | 0.2791 |
1.6787 | 43.0 | 258 | 1.6900 | 0.2791 |
1.6617 | 44.0 | 264 | 1.6900 | 0.2791 |
1.7215 | 45.0 | 270 | 1.6900 | 0.2791 |
1.7215 | 46.0 | 276 | 1.6900 | 0.2791 |
1.6881 | 47.0 | 282 | 1.6900 | 0.2791 |
1.6881 | 48.0 | 288 | 1.6900 | 0.2791 |
1.6823 | 49.0 | 294 | 1.6900 | 0.2791 |
1.7275 | 50.0 | 300 | 1.6900 | 0.2791 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0