metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_beit_base_f1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8888888888888888
hushem_40x_beit_base_f1
This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9231
- Accuracy: 0.8889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0764 | 1.0 | 107 | 0.7220 | 0.8 |
0.0168 | 2.0 | 214 | 1.0516 | 0.8 |
0.0193 | 2.99 | 321 | 1.1697 | 0.7556 |
0.0111 | 4.0 | 429 | 0.9218 | 0.8222 |
0.0033 | 5.0 | 536 | 1.0001 | 0.8444 |
0.0048 | 6.0 | 643 | 1.0798 | 0.8222 |
0.0 | 6.99 | 750 | 0.9561 | 0.8667 |
0.0 | 8.0 | 858 | 0.9979 | 0.8444 |
0.0 | 9.0 | 965 | 0.9770 | 0.8667 |
0.0 | 9.98 | 1070 | 0.9231 | 0.8889 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1