Edit model card

hku-nlp/instructor-xl

This is a general embedding model: It maps any piece of text (e.g., a title, a sentence, a document, etc.) to a fixed-length vector in test time without further training. With instructions, the embeddings are domain-specific (e.g., specialized for science, finance, etc.) and task-aware (e.g., customized for classification, information retrieval, etc.)

The model is easy to use with sentence-transformer library.

Installation

git clone https://github.com/HKUNLP/instructor-embedding
cd sentence-transformers
pip install -e .

Compute your customized embeddings

Then you can use the model like this to calculate domain-specific and task-aware embeddings:

from sentence_transformers import SentenceTransformer
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
instruction = "Represent the Science title; Input:"
model = SentenceTransformer('hku-nlp/instructor-xl')
embeddings = model.encode([[instruction,sentence,0]])
print(embeddings)

Calculate Sentence similarities

You can further use the model to compute similarities between two groups of sentences, with customized embeddings.

from sklearn.metrics.pairwise import cosine_similarity
sentences_a = [['Represent the Science sentence; Input: ','Parton energy loss in QCD matter',0], 
               ['Represent the Financial statement; Input: ','The Federal Reserve on Wednesday raised its benchmark interest rate.',0]
sentences_b = [['Represent the Science sentence; Input: ','The Chiral Phase Transition in Dissipative Dynamics', 0],
               ['Represent the Financial statement; Input: ','The funds rose less than 0.5 per cent on Friday',0]
embeddings_a = model.encode(sentences_a)
embeddings_b = model.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
print(similarities)
Downloads last month
34
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.