hominpark's picture
update model card README.md
ea03d9c
|
raw
history blame
3.9 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - imagefolder
model-index:
  - name: donut-base-hangul-handwritten-KMOU
    results: []

donut-base-hangul-handwritten-KMOU

This model is a fine-tuned version of naver-clova-ix/donut-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5986 1.0 157 2.9011
0.6912 2.0 314 0.4334
0.3317 3.0 471 0.2250
0.2029 4.0 628 0.1379
0.1587 5.0 785 0.0901
0.0963 6.0 942 0.0609
0.0812 7.0 1099 0.0410
0.0755 8.0 1256 0.0289
0.0471 9.0 1413 0.0191
0.0368 10.0 1570 0.0140
0.0247 11.0 1727 0.0088
0.023 12.0 1884 0.0065
0.0239 13.0 2041 0.0045
0.0139 14.0 2198 0.0036
0.0166 15.0 2355 0.0025
0.0144 16.0 2512 0.0020
0.0144 17.0 2669 0.0017
0.012 18.0 2826 0.0012
0.0085 19.0 2983 0.0008
0.0063 20.0 3140 0.0010
0.0054 21.0 3297 0.0007
0.0074 22.0 3454 0.0008
0.0056 23.0 3611 0.0006
0.0048 24.0 3768 0.0004
0.0055 25.0 3925 0.0003
0.0053 26.0 4082 0.0003
0.0054 27.0 4239 0.0003
0.0067 28.0 4396 0.0004
0.0042 29.0 4553 0.0002
0.0028 30.0 4710 0.0003
0.0036 31.0 4867 0.0002
0.004 32.0 5024 0.0003
0.0041 33.0 5181 0.0001
0.005 34.0 5338 0.0002
0.0025 35.0 5495 0.0002
0.004 36.0 5652 0.0001
0.0038 37.0 5809 0.0001
0.0033 38.0 5966 0.0001
0.0026 39.0 6123 0.0001
0.0052 40.0 6280 0.0001
0.0051 41.0 6437 0.0001
0.0019 42.0 6594 0.0001
0.0036 43.0 6751 0.0001
0.0053 44.0 6908 0.0001
0.0018 45.0 7065 0.0001
0.0033 46.0 7222 0.0001
0.0061 47.0 7379 0.0001
0.0023 48.0 7536 0.0000
0.0023 49.0 7693 0.0000
0.0048 50.0 7850 0.0000

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.10.0+cu111
  • Datasets 2.11.0
  • Tokenizers 0.13.3