|
--- |
|
language: code |
|
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png |
|
datasets: |
|
- code_search_net |
|
--- |
|
|
|
# CodeBERTa |
|
|
|
CodeBERTa is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub. |
|
|
|
Supported languages: |
|
|
|
```shell |
|
"go" |
|
"java" |
|
"javascript" |
|
"php" |
|
"python" |
|
"ruby" |
|
``` |
|
|
|
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`. |
|
|
|
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta). |
|
|
|
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full corpus (~2M functions) for 5 epochs. |
|
|
|
### Tensorboard for this training ⤵️ |
|
|
|
[![tb](https://cdn-media.huggingface.co/CodeBERTa/tensorboard.png)](https://tensorboard.dev/experiment/irRI7jXGQlqmlxXS0I07ew/#scalars) |
|
|
|
## Quick start: masked language modeling prediction |
|
|
|
```python |
|
PHP_CODE = """ |
|
public static <mask> set(string $key, $value) { |
|
if (!in_array($key, self::$allowedKeys)) { |
|
throw new \InvalidArgumentException('Invalid key given'); |
|
} |
|
self::$storedValues[$key] = $value; |
|
} |
|
""".lstrip() |
|
``` |
|
|
|
### Does the model know how to complete simple PHP code? |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
fill_mask = pipeline( |
|
"fill-mask", |
|
model="huggingface/CodeBERTa-small-v1", |
|
tokenizer="huggingface/CodeBERTa-small-v1" |
|
) |
|
|
|
fill_mask(PHP_CODE) |
|
|
|
## Top 5 predictions: |
|
# |
|
' function' # prob 0.9999827146530151 |
|
'function' # |
|
' void' # |
|
' def' # |
|
' final' # |
|
``` |
|
|
|
### Yes! That was easy 🎉 What about some Python (warning: this is going to be meta) |
|
|
|
```python |
|
PYTHON_CODE = """ |
|
def pipeline( |
|
task: str, |
|
model: Optional = None, |
|
framework: Optional[<mask>] = None, |
|
**kwargs |
|
) -> Pipeline: |
|
pass |
|
""".lstrip() |
|
``` |
|
|
|
Results: |
|
```python |
|
'framework', 'Framework', ' framework', 'None', 'str' |
|
``` |
|
|
|
> This program can auto-complete itself! 😱 |
|
|
|
### Just for fun, let's try to mask natural language (not code): |
|
|
|
```python |
|
fill_mask("My name is <mask>.") |
|
|
|
# {'sequence': '<s> My name is undefined.</s>', 'score': 0.2548016905784607, 'token': 3353} |
|
# {'sequence': '<s> My name is required.</s>', 'score': 0.07290805131196976, 'token': 2371} |
|
# {'sequence': '<s> My name is null.</s>', 'score': 0.06323737651109695, 'token': 469} |
|
# {'sequence': '<s> My name is name.</s>', 'score': 0.021919190883636475, 'token': 652} |
|
# {'sequence': '<s> My name is disabled.</s>', 'score': 0.019681859761476517, 'token': 7434} |
|
``` |
|
|
|
This (kind of) works because code contains comments (which contain natural language). |
|
|
|
Of course, the most frequent name for a Computer scientist must be undefined 🤓. |
|
|
|
|
|
## Downstream task: [programming language identification](https://huggingface.co/huggingface/CodeBERTa-language-id) |
|
|
|
See the model card for **[`huggingface/CodeBERTa-language-id`](https://huggingface.co/huggingface/CodeBERTa-language-id)** 🤯. |
|
|
|
<br> |
|
|
|
## CodeSearchNet citation |
|
|
|
<details> |
|
|
|
```bibtex |
|
@article{husain_codesearchnet_2019, |
|
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, |
|
shorttitle = {{CodeSearchNet} {Challenge}}, |
|
url = {http://arxiv.org/abs/1909.09436}, |
|
urldate = {2020-03-12}, |
|
journal = {arXiv:1909.09436 [cs, stat]}, |
|
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, |
|
month = sep, |
|
year = {2019}, |
|
note = {arXiv: 1909.09436}, |
|
} |
|
``` |
|
|
|
</details> |
|
|