hugodk-sch's picture
End of training
d24b46a verified
|
raw
history blame
2.6 kB
---
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: NbAiLab/nb-gpt-j-6B-v2
datasets:
- hugodk-sch/aftonposten_title_prefs
model-index:
- name: aftonposten-6b-align-scan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aftonposten-6b-align-scan
This model is a fine-tuned version of [data/ap-gpt-j-6b-sft-qlora-04-08](https://huggingface.co/data/ap-gpt-j-6b-sft-qlora-04-08) on the hugodk-sch/aftonposten_title_prefs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6928
- Rewards/chosen: 0.0020
- Rewards/rejected: 0.0008
- Rewards/accuracies: 0.5100
- Rewards/margins: 0.0011
- Logps/rejected: -37.5125
- Logps/chosen: -34.0248
- Logits/rejected: -2.2389
- Logits/chosen: -2.2438
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6918 | 0.26 | 100 | 0.6936 | -0.0007 | -0.0002 | 0.5079 | -0.0006 | -37.5174 | -34.0382 | -2.2392 | -2.2441 |
| 0.6908 | 0.52 | 200 | 0.6932 | 0.0034 | 0.0031 | 0.5112 | 0.0002 | -37.5009 | -34.0177 | -2.2392 | -2.2440 |
| 0.6895 | 0.78 | 300 | 0.6937 | 0.0015 | 0.0022 | 0.5050 | -0.0007 | -37.5058 | -34.0273 | -2.2390 | -2.2438 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1