metadata
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: norallm/normistral-7b-warm
datasets:
- hugodk-sch/aftonposten_title_prefs
model-index:
- name: ap-normistral-7b-align-scan
results: []
ap-normistral-7b-align-scan
This model is a fine-tuned version of data/ap-normistral-7b-sft-qlora on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set:
- Loss: 0.7822
- Rewards/chosen: -0.1005
- Rewards/rejected: -0.2047
- Rewards/accuracies: 0.5249
- Rewards/margins: 0.1042
- Logps/rejected: -36.2224
- Logps/chosen: -32.5688
- Logits/rejected: 98.7467
- Logits/chosen: 98.7645
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.7017 | 0.26 | 100 | 0.8030 | -0.0408 | -0.0544 | 0.5137 | 0.0136 | -36.0346 | -32.4942 | 98.7637 | 98.7765 |
0.6236 | 0.52 | 200 | 0.7719 | -0.1720 | -0.2931 | 0.5216 | 0.1211 | -36.3329 | -32.6582 | 98.7039 | 98.7271 |
0.5655 | 0.78 | 300 | 0.7744 | -0.0855 | -0.2061 | 0.5428 | 0.1206 | -36.2242 | -32.5501 | 98.7517 | 98.7722 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1