hugodk-sch's picture
End of training
2cd4a81 verified
|
raw
history blame
2.61 kB
metadata
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: norallm/normistral-7b-warm
datasets:
  - hugodk-sch/aftonposten_title_prefs
model-index:
  - name: ap-normistral-7b-align-scan
    results: []

ap-normistral-7b-align-scan

This model is a fine-tuned version of data/ap-normistral-7b-sft-qlora on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6762
  • Rewards/chosen: -0.0561
  • Rewards/rejected: -0.0991
  • Rewards/accuracies: 0.5889
  • Rewards/margins: 0.0431
  • Logps/rejected: -36.9578
  • Logps/chosen: -33.0039
  • Logits/rejected: 97.9360
  • Logits/chosen: 97.9657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6795 0.26 100 0.6967 0.0004 0.0027 0.4846 -0.0023 -35.9393 -32.4388 98.7026 98.7111
0.6355 0.52 200 0.6793 -0.0461 -0.0803 0.5835 0.0342 -36.7700 -32.9042 98.1082 98.1292
0.6306 0.78 300 0.6733 -0.0561 -0.1040 0.6121 0.0480 -37.0066 -33.0038 97.9574 97.9847

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1