hugodk-sch's picture
End of training
8d40773 verified
|
raw
history blame
2.61 kB
metadata
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: norallm/normistral-7b-warm
datasets:
  - hugodk-sch/aftonposten_title_prefs
model-index:
  - name: ap-normistral-7b-align-scan
    results: []

ap-normistral-7b-align-scan

This model is a fine-tuned version of data/ap-normistral-7b-sft-qlora on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set:

  • Loss: 25.3941
  • Rewards/chosen: -0.0157
  • Rewards/rejected: -0.0327
  • Rewards/accuracies: 0.5507
  • Rewards/margins: 0.0170
  • Logps/rejected: -36.2932
  • Logps/chosen: -32.6000
  • Logits/rejected: 98.6400
  • Logits/chosen: 98.6695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
23.2882 0.26 100 25.6712 -0.0029 -0.0100 0.5228 0.0071 -36.0669 -32.4722 98.7464 98.7592
20.2659 0.52 200 24.8289 -0.0134 -0.0338 0.5341 0.0204 -36.3046 -32.5775 98.6263 98.6515
20.0695 0.78 300 26.1545 -0.0226 -0.0314 0.5307 0.0088 -36.2802 -32.6693 98.6503 98.6807

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1