hugodk-sch's picture
End of training
ce61ecb verified
|
raw
history blame
2.61 kB
metadata
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: norallm/normistral-7b-warm
datasets:
  - hugodk-sch/aftonposten_title_prefs
model-index:
  - name: ap-normistral-7b-align-scan
    results: []

ap-normistral-7b-align-scan

This model is a fine-tuned version of data/ap-normistral-7b-sft-qlora on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4992
  • Rewards/chosen: 0.0239
  • Rewards/rejected: 0.0174
  • Rewards/accuracies: 0.4892
  • Rewards/margins: 0.0064
  • Logps/rejected: -35.7921
  • Logps/chosen: -32.2044
  • Logits/rejected: 98.2668
  • Logits/chosen: 98.2727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4933 0.26 100 0.5023 0.0062 0.0168 0.4498 -0.0106 -35.7990 -32.3816 98.6627 98.6788
0.4602 0.52 200 0.4967 0.0067 -0.0120 0.5511 0.0188 -36.0870 -32.3759 98.3410 98.3552
0.4586 0.78 300 0.4994 0.0186 0.0126 0.5129 0.0060 -35.8407 -32.2572 98.2712 98.2791

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1