hugodk-sch's picture
Model save
fda51f1 verified
|
raw
history blame
2.52 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - dpo
  - generated_from_trainer
base_model: norallm/normistral-7b-warm
model-index:
  - name: ap-normistral-7b-align-scan
    results: []

ap-normistral-7b-align-scan

This model is a fine-tuned version of norallm/normistral-7b-warm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4970
  • Rewards/chosen: 0.0579
  • Rewards/rejected: 0.0502
  • Rewards/accuracies: 0.5565
  • Rewards/margins: 0.0077
  • Logps/rejected: -35.8660
  • Logps/chosen: -32.3273
  • Logits/rejected: 98.3156
  • Logits/chosen: 98.3222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4665 0.26 100 0.4971 0.0771 0.0651 0.5187 0.0119 -35.8363 -32.2890 98.7124 98.7206
0.3678 0.52 200 0.4983 -0.0042 -0.0160 0.5104 0.0118 -35.9986 -32.4516 98.3577 98.3655
0.3546 0.78 300 0.4970 0.0579 0.0502 0.5565 0.0077 -35.8660 -32.3273 98.3156 98.3222

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1