hugodk-sch's picture
End of training
84803cc verified
|
raw
history blame
2.63 kB
metadata
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
base_model: NorLLM-AI/NorMistral-7B
datasets:
  - hugodk-sch/aftonposten_title_prefs
model-index:
  - name: norllm-ai-normistral-7b-align-scan
    results: []

norllm-ai-normistral-7b-align-scan

This model is a fine-tuned version of data/norllm-ai-normistral-7b-sft-qlora on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4935
  • Rewards/chosen: 0.0418
  • Rewards/rejected: 0.0072
  • Rewards/accuracies: 0.5602
  • Rewards/margins: 0.0346
  • Logps/rejected: -34.6891
  • Logps/chosen: -31.2302
  • Logits/rejected: -2.8078
  • Logits/chosen: -2.8103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.0237 0.26 100 0.4815 0.0235 -0.0157 0.5486 0.0392 -34.7178 -31.2531 -2.8136 -2.8161
2.9692 0.52 200 0.4973 0.0315 -0.0118 0.5631 0.0433 -34.7129 -31.2431 -2.8099 -2.8121
0.9535 0.78 300 0.4705 0.0616 0.0107 0.5370 0.0508 -34.6847 -31.2055 -2.8071 -2.8098

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1