bert-finetuned-ner / README.md
hydrochii's picture
Training complete
1d4b3b3
|
raw
history blame
2.14 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.928005284015852
          - name: Recall
            type: recall
            value: 0.9458094917536183
          - name: F1
            type: f1
            value: 0.9368228038006334
          - name: Accuracy
            type: accuracy
            value: 0.9865124628655854

bert-finetuned-ner

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0575
  • Precision: 0.9280
  • Recall: 0.9458
  • F1: 0.9368
  • Accuracy: 0.9865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0733 1.0 1756 0.0607 0.9126 0.9334 0.9229 0.9841
0.0378 2.0 3512 0.0575 0.9280 0.9458 0.9368 0.9865

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0